Towards Tensor Regression with Applications In
Neuroimaging Data Analysis

Objectives & Motivations

Objectives:

e Formulate a regression problem by treating neuroimaging data (e.g.

EEG, fMRI) as covariates anc

clinical outcome as response

e Understand the neural development of normal brains and brains with
disorders through neuroimaging data

Motivations:

o Classical generalized linear models (GLMs) use vectors as covariates

e Modern neuroimaging modalities generate covariates that are

multidimensional (tensors)

e Vectorizing neuroimaging data can be million-dimensional, making

computation infeasible

e \ectorizing destroys inherent spatial and temporal structure of tensor

that hold valuable information

Preliminaries

Tensors:

Tensors are multidimensional arrays:
o Formally denoted as X € RPxPox..xDy

e Generalizations of vectors and matrices

Generalized Linear Model:

y = (X,0) +e

where y € RExL

Remarks:

X € RPXN B c ]Rle

e P denotes the sample size of X
e N denotes the dimensions of the vectorized form of X and 3

Kronecker Product:

A = la; as
B = [b b

CLM]T c RMx1
bN]T c RV

A® B = [aB ayB ... ayB]! € RMVX!
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Methodology

Problem Formulation:
o Let B € RV*YN denote the weight parameters in our regression model

o Let 8 = vec(f3), where vec(-) is the function that vectorizes a multidimensional
array

o If B =ab', where a € RY*! and b € RV*!, then E = a ® b, that is, 5 admits
a Kronecker structure

By exploiting the Kronecker structure of our parameters, we rewrite our regression
model formulation as the following:

y = (X, (51 ®B)) +e

Solution:
To solve, formulate into an optimization problem:

~lY - X(8 @ B

arg min
51762

Remarks:

e Our model simplifies the GLM by solving for two parameters of dimensions
(N x 1) than solving for one parameter of dimensions (/N x 1)

e (Can solve for 31 and 5 using an alternating minimization method or by
gradient descent

Future Work & Plans

e |Imposing a Kronecker structure to our regression parameters allows us to solve
for less parameters more efficiently

e \We can generalize this Kronecker model to tensor regression models with
high-dimensional covariates

Roadmap:

Extend Regression
Model with
Additional Structure

Results

Goal: Observe the true signal region in 5 using synthetically generated
data (z;, ;)
e Simulated n=250, 500, 750 (sample size) univariate responses y;
according to the Kronecker structured model

o B € R !Wis a 2-dimensional image

o X ¢ RP W is drawn i.i.d. from N(0,1), where 100 is the
vectorized dimensions of [

e ¢ is drawn from N(0, o*) with different o

Results (n=750):
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Plot of Errors (n=250, 500, 750):
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