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Human Activity Recognition (HAR) has a wide range of real-world
applications, such as health care and fitness tracking

Device-based approaches for HAR (e.g. smart watches) have
limitations due to cost and discomfort

Many significant efforts have recently been made to explore
device-free HAR that utilizes the information collected from wireless
infrastructures (e.g. WiFi signals)

Other existing wireless devices, such as cameras, can potentially leak
and lead to privacy issues

We propose a network, utilizing mmWave data that can accurately
classify amongst different human activities, that is cheaper and
user-friendly

mmWave radar systems transmit short wavelength waves that are in
the millimeter range, and thus have high frequencies
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FIGURE 1

Figure 1 shows camera and mmWave sensor setup
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5. Classification model is a teacher-student
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. mmWave sensor triggers 150 frames and
captures data

. Camera takes picture synchronous to
mmWave sensor

. Process mmWave data to perform 2-D
Fast Fourier Transform (FFT)

. Images are further processed using
open-source project OpenPose [1] to be
used as labels

network similar to [2] that is composed
of a Convolutional Neural Network (see
Figure 2), using built-in Python packages

6. Modelis further tested using dynamic POSE ESTIMATION
data l

7. Provides a human pose estimated figure
performing activity and classification of ACTIVITY RECOGNITION
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We trained our classification model for 200 epochs with an Adam
optimizer and a total of 1200 data samples. Our current model can
classify amongst three different activities: stretching, kicking right
leg, and sitting down. The experiments for these activities have 450,
450, and 300 samples respectively.

EXAMPLE RESULTS FOR SITTING
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ACTIVITY: Sitting
FIGURE 3

ACTIVITY: Sitting
FIGURE 4

Figure 3 and Figure 4 lead up to a person sitting down respectively

Conclusion & Future Direction

O We explored a method of hands-free HAR with mmWave sensors
by using signal processing and deep-learning techniques

O Future work consists of gathering more data and optimizing our
model for better clarity and accuracy
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