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Motivations & Objectives

Motivations:
• Traditional machine learning algorithms are formulated for vectors as

inputs
• Vectorizing multidimensional data to fit these algorithms can be

computationally expensive
• Vectorizing data destroys inherent spatial and temporal structure of

the tensor

Objectives:
• Formulate structured machine learning algorithms that exploits

structure of tensor data
• Impose tensor factorizations (e.g. CANDECOMP/PARAFAC

decomposition) on predictors to reduce the parameters to be
estimated

Preliminaries

Tensors:

Tensors are multidimensional arrays:
• Formally denoted as X ∈ RD1×D2×···×DN

• Generalizations of vectors and matrices
• Useful for modelling data with many variables

CANDECOMP/PARAFAC (CP) Decomposition:

CP decomposition expresses a tensor as the sum of component rank–one
tensors [1]. For a three-dimensional tensor, this is formulated as:

X ≈
R∑
r=1

ar ◦ br ◦ cr. (1)

Methodology

Consider the ERM problem for two types of classifiers:

Support Vector Machines (SVM):

minimize
w
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max[0, 1− yi(w>xi)] +
λ
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||w||2. (2)

Logistic Regression (LOGIT):

minimize
w
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log(1 + exp (−yi(w>xi))) + λ||w||2. (3)

Problem Formulation:

Consider {(Xi, yi)}ni=1, where Xi ∈ RD1×...×DN denotes a tensor data sample with
yi ∈ {−1, 1}. By imposing (1) onto predictors w> of (2) and (3):

CP Structured SVM:
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CP Structured LOGIT:
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Remarks:
• Our models significantly reduces the number of parameters to be estimated
• Can solve for factor matrices W1,W2, . . . ,WN using an alternating

minimization method as proposed by Zhou et al. [2]

Conclusion & Future Work

• Imposing structure on predictors allows us to solve for less parameters more
efficiently
• Structured algorithms works efficiently when true tensor predictor exhibits

low–rank structure
• Performance of traditional algorithm converges to structured algorithm as

sample size increases
• This is a proof of concept – future work involves finding real datasets to test

these methods

Results

Goal: Fix predictor to be a (15× 15) image and generate i.i.d Gaussian
data (Xi, yi)
• See if our models can estimate true predictor given (Xi, yi)
• Evaluate performance of models using metrics MSE, cosine distance,

reconstruction error, and classification accuracy

Results (for different sample sizes):

Performance Metrics (with increasing sample sizes):
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