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Motivations & Objectives Methodology Results

Goal: Fix predictor to be a (15 x 15) image and generate i.i.d Gaussian
data (X27 yz)
e See if our models can estimate true predictor given (X, y;)
e Evaluate performance of models using metrics MSE, cosine distance,
reconstruction error, and classification accuracy

Motivations: Consider the ERM problem for two types of classifiers:
e Traditional machine learning algorithms are formulated for vectors as

inputs Support Vector Machines (SVM):
e \ectorizing multidimensional data to fit these algorithms can be | \
computationally expensive minimize — Z max|0, 1 — y;(w ' z;)] + §| wl|*.
e Vectorizing data destroys inherent spatial and temporal structure of i=1

the tensor Results (for different sample sizes):
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e Formulate structured machine learning algorithms that exploits mininize o Zl og(l +exp (—yi(w i) + Al|wl| : : :
structure of tensor data " : : :
e Impose tensor factorizations (e.g. CANDECOMP /PARAFAC : - :

. . Problem Formulation: _— -
decomposition) on predictors to reduce the parameters to be Ceoq

Consider {(X;, i)}, where X; € RP**D~ denotes a tensor data sample with

estimated
y; € {—1,1}. By imposing (1) onto predictors w' of (2) and (3): z
Preliminaries :
CP Structured SVM: ,
Tensors: R
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CP Structured LOGIT: :
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minimize - ;1 log(1 4 exp ( yz(<§1 Wi oWy o...oWy' X)) (5) :
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Tensors are multidimensional arrays:
o Formally denoted as X € RV Pox-xDy
e Generalizations of vectors and matrices
e Useful for modelling data with many variables

n=1500 n = 1500

Remarks:
e Our models significantly reduces the number of parameters to be estimated Performance Metrics (with increasing sample sizes):
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Imposing structure on predictors allows us to solve for less parameters more
ai efficiently

Structured algorithms works efficiently when true tensor predictor exhibits
CP decomposition expresses a tensor as the sum of component rank—one low—rank structure [1] T. Kolda and B. Bader, " Tensor decompositions and applications”,
tensors [1]. For a three-dimensional tensor, this is formulated as: Performance of traditional algorithm converges to structured algorithm as SIAM Review,vol. 51, pp. 4553500, 08 2009.
sample size increases 2] H. Zhou, L. Li, and H. Zhu, " Tensor regression with applications in

R
X ~ Z ay © by 0 ¢ (1) This is a proof of concept — future work involves finding real datasets to test neuroimaging dataanalysis”, Journal of the American Statistical
r=1 these methods Association, vol. 108, pp. 5403552, 062013.

References




