Low-Rank Phase Retrieval with Structured Tensor Modaels
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Problem and Challenges

Problem Statement:
Recover a sequence of ¢ signals (typically images) x; € C" given
sampling matrices A € C"*"™ and measurements y; € R", where

yk:‘A-lk-Xk‘, kZl,...,q.

Existing Solutions:
e AltMinTrunc [1] and AltMinLowRaP [2] recover a low-rank matrix X
constructed by vectorizing and stacking each signal

e AltMinLowRaP has strong theoretical guarantees regarding sample
complexity for accurate recovery

e Both fail to converge (or converge to a poor local minimum) when
the number of measurements is more limited (m < n)

Low-Rank Phase Retrieval (LRPR)
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Tucker-Structured Low-Rank Phase Retrieval (TSPR)
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Main ldeas:

e Reduce sample complexity by reducing the number of parameters by assuming
that the data “lives” on a simpler manifold

e Un-vectorize each signal x;. and stack them to create a tensor which we
factorize using the Tucker decomposition

Algorithm Overview:
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Experimental Results

Goal: Observe the performance of TSPR compared to existing
algorithms by recovering a grayscale video in both the under and
over-determined regimes

Under-Sampled Case (m < n): Recover mouse video (40 x 80 x 90)
froma; ; ~ CN(0,I) fori=1,...,m, k=1,...,90 with m = 0.75n

Original AltMinLowRaP AltMinTrunc

Over-Sampled Case (m > n): Recover plane video (40 x 55 x 90)
from Coded Diffraction Patterns (CDP) with m = 2n

Original AltMinLowRaP AltMinTrunc

Remarks:
e AltMinLowRaP converges to a poor local minimum when the number
of measurements is more limited
TSPR converges to a better solution in the under-sampled regime,
but with a visual effect caused by the low-rank assumption on each of
the images

The effect highlights a tradeoff between the choice of the ranks and
accuracy of the reconstruction

TSPR performs comparably well (both visually and numerically) in
the over-sampled regime

Conclusion and Future Work

e Observed that using tensor models for LRPR empirically reduced the
sample complexity needed for accurate recovery

e Continuing work involves developing theoretical results for the
initialization and descent steps of TSPR




