# Low-Rank Phase Retrieval with Structured Tensor Models Soo Min Kwon<sup>\*</sup>, Xin Li<sup>\*</sup>, Anand D. Sarwate<sup>\*</sup> \* Rutgers, The State University of New Jersey



### **Problem and Challenges**

### **Problem Statement:**

Recover a sequence of q signals (typically images)  $\mathbf{x}_k \in \mathbb{C}^n$  given sampling matrices  $\mathbf{A}_k \in \mathbb{C}^{n imes m}$  and measurements  $\mathbf{y}_k \in \mathbb{R}^m$ , where

 $\mathbf{y}_k = |\mathbf{A}_k^\mathsf{T} \mathbf{x}_k|, \quad k = 1, \dots, q.$ 

### **Existing Solutions:**

- AltMinTrunc [1] and AltMinLowRaP [2] recover a low-rank matrix X constructed by vectorizing and stacking each signal
- AltMinLowRaP has strong theoretical guarantees regarding sample complexity for accurate recovery
- Both fail to converge (or converge to a poor local minimum) when the number of measurements is more limited ( $m \ll n$ )

### Low-Rank Phase Retrieval (LRPR)

### **Algorithm Overview:**



### References

[1] S. Nayer, N. Vaswani, and Y. C. Eldar, "Low rank phase retrieval", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4446-4450, 2017

[2] S. Nayer, P. Narayanamurthy, and N. Vaswani, "Provable low rank phase retrieval", IEEE Transactions on Information Theory, vol. 66, no. 9, pp. 5875–5903, 2020

## $\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_q$ $\approx$



LRPR

### Main Ideas:

- Reduce sample complexity by reducing the number of parameters by assuming that the data "lives" on a simpler manifold
- Un-vectorize each signal  $\mathbf{x}_k$  and stack them to create a tensor which we factorize using the Tucker decomposition

### **Algorithm Overview:**





## **Experimental Results**

**Goal:** Observe the performance of TSPR compared to existing algorithms by recovering a grayscale video in both the under and over-determined regimes



Original





### **Remarks:**

- of measurements is more limited
- the images
- accuracy of the reconstruction
- the over-sampled regime

## **Conclusion and Future Work**

- initialization and descent steps of TSPR







TSPR

AltMinLowRaP



**Over-Sampled Case**  $(m \gg n)$ : Recover plane video  $(40 \times 55 \times 90)$ from Coded Diffraction Patterns (CDP) with m = 2n



 $\mathrm{TSPR}$ 



AltMinLowRaP



AltMinTrunc

• AltMinLowRaP converges to a poor local minimum when the number

• TSPR converges to a better solution in the under-sampled regime, but with a visual effect caused by the low-rank assumption on each of

• The effect highlights a tradeoff between the choice of the ranks and

• TSPR performs comparably well (both visually and numerically) in

• Observed that using tensor models for LRPR empirically reduced the sample complexity needed for accurate recovery • Continuing work involves developing theoretical results for the