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q Human Activity Recognition (HAR) has a wide range of real-world 
applications, such as health care and fitness tracking.

q Device-based approaches for HAR (e.g. smartwatches) have 
limitations due to cost and discomfort.

q Many significant efforts have recently been made to explore 
device-free HAR that utilizes the information collected from 
wireless infrastructures (e.g. WiFi signals).

q Some existing wireless sensing devices, such as cameras, can 
potentially leak and lead to privacy issues.
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q We proposed a hands-free system using a single mmWave sensor 
that can achieve HAR and create a pose estimated skeleton 
performing the classified activities.

q We use a single commercial off-the-shelf (COTS) radar sensor to 
achieve a contactless activity recognition.

q Our system works in different environments and is also possible by 
different people.

q We proposed a hands-free Human Activity Recognition system 
using a mmWave sensor with signal processing and deep-learning 
techniques.

q Our system provides an estimated skeleton for performing the 
activity classification. 

q We would improve the adaptability of our system and make it more 
robust to other potential interference.
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We trained our classification models with an Adam optimizer and a 
total of 1200 data samples. Our current model can classify amongst 
three different activities: standing, stretching, kicking, and sitting 
down. The experiments for each activity have 450, 450, and 300 
samples, respectively.
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We evaluated the mean accuracy among all estimated skeleton points. 
As we can see from the accuracy and loss plots, we achieved 90.79% 
mean accuracy for pose reconstructing. 
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q mmWave Data Capturing: The mmWave sensor triggers 150 
frames over 10 seconds and captures data.

q Camera Data Capturing: Camera takes a picture in sync with 
the mmWave sensor.

q Feature Extraction: Process mmWave 
data and perform 2-D Fast Fourier 
Transform (FFT).

q OpenPose: OpenPose is an open-source 
project for extracting the skeleton from an 
image. In this project, the images are 
processed using OpenPose for labeling. 

q Classification Model: Classification 
model is a teacher-student network 
composed of a Convolutional Neural 
Network (CNN) with the structure shown 
on the right. The final output of the model 
is an estimated human skeleton performing 
the classified activity.
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q We capture both mmWave signals and 
picture frames while a person is 
performing an activity in front of the 
data capturing set.

q The position of the camera and 
mmWave sensor is fixed on a 3D-printed 
base.

q The camera in the data capturing set is 
for the ground truth.


