WINLAB | Wireless Information Soo M Kwon, Song Yang, Jian Liu, Xin Yang, Wesam Saleh, Shreya Patel, Christine Mathews, Yingying Chen Network Laboratory

Motivations & Introduction

□ Human Activity Recognition (HAR) has a wide range of real-world applications, such as health care and fitness tracking.

TGERS

- Device-based approaches for HAR (e.g. smartwatches) have limitations due to cost and discomfort.
- □ Many significant efforts have recently been made to explore device-free HAR that utilizes the information collected from wireless infrastructures (e.g. WiFi signals).
- □ Some existing wireless sensing devices, such as cameras, can potentially leak and lead to privacy issues.

Contributions

- □ We proposed a hands-free system using a single mmWave sensor that can achieve HAR and create a pose estimated skeleton performing the classified activities.
- □ We use a single commercial off-the-shelf (COTS) radar sensor to achieve a contactless activity recognition.
- □ Our system works in different environments and is also possible by different people.

Data Collecting

- □ We capture both mmWave signals and picture frames while a person is performing an activity in front of the data capturing set.
- □ The position of the camera and mmWave sensor is fixed on a 3D-printed base.
- □ The camera in the data capturing set is for the ground truth.

Data Capturing Set

mmWave-based Human Activity Recognition

Methodologies

System Architecture

- □ mmWave Data Capturing: The mmWave sensor triggers 150 frames over 10 seconds and captures data.
- □ Camera Data Capturing: Camera takes a picture in sync with the mmWave sensor.
- □ Feature Extraction: Process mmWave data and perform 2-D Fast Fourier Transform (FFT).
- □ **OpenPose:** OpenPose is an open-source project for extracting the skeleton from an image. In this project, the images are processed using OpenPose for labeling.
- □ **Classification Model:** Classification model is a teacher-student network composed of a Convolutional Neural Network (CNN) with the structure shown on the right. The final output of the model is an estimated human skeleton performing the classified activity.

Acknowledgements

We would like to thank Professor Yingying Chen, Professor Ivan Seskar and all the faculties in WINLAB for their endless support and guidance.

Results & Evaluation

We trained our classification models with an Adam optimizer and a total of 1200 data samples. Our current model can classify amongst three different activities: standing, stretching, kicking, and sitting down. The experiments for each activity have 450, 450, and 300 samples, respectively.

ACTIVITY: Standing

We evaluated the mean accuracy among all estimated skeleton points. As we can see from the accuracy and loss plots, we achieved 90.79% mean accuracy for pose reconstructing.

- techniques.
- activity classification.
- robust to other potential interference.

ACTIVITY: Sitting

ACTIVITY: Kicking

Conclusions & Future Direction

□ We proposed a hands-free Human Activity Recognition system using a mmWave sensor with signal processing and deep-learning

• Our system provides an estimated skeleton for performing the

□ We would improve the adaptability of our system and make it more