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ABSTRACT OF THE THESIS
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Anand D. Sarwate

In this thesis, we consider optimization problems that involve statistically estimating

signals from tensor data. We observe that modelling the signals as tensors using tensor

factorizations increases the accuracy of more closely estimating the true signal. We

empirically show that this is a result of two reasons: (i) it reduces the number of pa-

rameters that need to be estimated, hinting at a decrease in sample complexity, and

(ii) it allows us to take advantage of the low-rank property that many high-dimensional

tensor data samples possess. We also show that while there exists a tradeoff between

the accuracy of the reconstructed signal and the ranks according to the tensor decompo-

sition, there often exists a rank that improves performance in sample-starved settings.

We discuss these tradeoffs and develop algorithms for two of these applications, classi-

fication and phase retrieval, and demonstrate the effectiveness of our algorithms under

several different settings and performance metrics.
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Chapter 1

Introduction

1.1 Motivation

Many fundamental problems in machine learning and signal processing are formulated

as either convex or non-convex optimization problems, examples including dictionary

learning [1], phase retrieval [2, 3] and blind deconvolution [4]. The objective of these

optimization problems is to estimate or recover signals given data or functions of the

data. One of the most common properties that these optimization problems share is that

they are generally formulated for vector-valued data. While problems with structure

arise in many applications, it may not be appropriate for data that intrinsically have

many dimensions. To use vector-based formulations for multidimensional data samples,

which we call tensors, we need to vectorize the data. However, the vectorization of

tensors destroys their spatial and temporal structure, a structure that many tensors

possess in applications such as medical and hyperspectral imaging [5, 6]. Additionally,

for high-dimensional tensors, vectorization yields a problem that is either ill-posed or

requires significantly more samples, making the recovery of the signal (or signals) more

difficult.

In this thesis, we tackle these challenges in two applications, statistical machine

learning and phase retrieval, by imposing a tensor factorization on the parameters of

the optimization problem. We observe that imposing this structure leverages the low-

rank property that many tensor data samples have, which increases performance across

various metrics. We also empirically show that this structure decreases the sample

complexity needed for accurate recovery of the signals by decreasing the number of

parameters that need to be estimated.
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1.2 Contributions and Organization

Contributions. The main contributions of this thesis are the empirical results that

demonstrate the effectiveness of imposing a tensor factorization on the parameters of

two optimization problems: statistical machine learning and low-rank phase retrieval.

We extensively show with several experiments that our algorithms outperforms existing

methods by leveraging the low-rank property that many high-dimensional tensor data

samples have. For each of our proposed algorithms, we provide pseudo-code and details

on its implementation. The code to reproduce the results presented in this thesis is

available at

https://github.com/soominkwon.

Organization. The rest of this thesis is organized as follows. In Chapter 2, we in-

troduce the notation that we will use throughout this thesis and discuss some relevant

tensor algebra. Those who are interested in the algorithms and results can skip to

Chapters 3 and 4. In Chapter 3, we present our first contribution [7]. We modify

two popular machine learning classification algorithms, Logistic Regression and Lin-

ear Support Vector Machine, for tensor data and discuss them in this chapter. This

chapter also briefly reviews the main ideas behind these two algorithms, which may be

beneficial in understanding the algorithms modified to fit tensor data. In Chapter 4, we

present our second contribution, which is changing the modelling assumption of data to

tensors rather than as matrices as previously done in the literature for low-rank phase

retrieval [8]. We show that modelling the signals as tensors more accurately recovers

the signals in both the under and over-determined settings when the values of the ranks

corresponding to the tensor factorization are chosen appropriately.
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Chapter 2

Notation and Preliminaries

In this chapter, we begin by specifying the notation that we will be using throughout this

thesis. We then review some preliminaries regarding some vector and matrix products

as well as some tensor algebra.

2.1 Notation

We denote scalars with lowercase letters (e.g. x), vectors with bold lowercase letters

(e.g. x), matrices with bold uppercase letters (e.g. X), and tensors with underlined,

bold uppercase letters (e.g. X). We denote the n-th column of the matrix X as xn.

Similarly, we denote the n-th frontal slice of the tensor X as Xn. We denote the identity

matrix as In, where n is the dimensions of the matrix. We use ‖·‖2 and ‖·‖F for the

Euclidean (or `2) norm of a vector or spectral norm of a matrix and the Frobenius

norm, respectively. We use x∗ to denote the conjugate (or Hermitian) transpose of the

vector x. Lastly, we denote the inner-product between two vectors a and b as 〈a,b〉.

2.2 Vector and Matrix Products

Kronecker Product. Let A ∈ Rm×n and B ∈ Rj×k be two matrices with entries

A =


a11 . . . a1n
...

. . .
...

am1 . . . amn

 , B =


b11 . . . b1k
...

. . .
...

bj1 . . . bjk

 .
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The Kronecker product of A and B, denoted as A ⊗ B, is computed by multiplying

every element in A by the matrix B. Hence, A⊗B ∈ Rmj×nk is a matrix with entries

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .

Khatri-Rao Product. Let C ∈ Rm×n and D ∈ Rp×n be two matrices with columns

C =
[
c1 c2 . . . cn

]
, D =

[
d1 d2 . . . dn

]
.

The Khatri-Rao product of matrices C and D, denoted by C � D, is computed by

taking the column-wise Kronecker product. Hence, C �D ∈ Rmp×n is a matrix with

columns

C�D =
[
c1 ⊗ d1 c2 ⊗ d2 . . . cn ⊗ dn

]
.

Note that if C and D were instead column vectors (i.e. n = 1), then the Khatri-Rao

product is equivalent to the Kronecker product (i.e. c� d = c⊗ d).

2.3 A Primer on Tensor Algebra

For a comprehensive review on tensor algebra, we refer the reader to the survey paper

by Kolda and Bader [9]. We first review two ways in which we can reorder tensors and

then introduce two ways in which we can decompose tensors that we will use later in

this thesis.

2.3.1 Tensor Reorderings

To better explain and visualize tensor reorderings, we will consider a third-order tensor

of dimensions X ∈ R3×3×2, with the two frontal slices having entries

X1 =


2 8 14

4 10 16

6 12 18

 , X2 =


1 7 13

3 9 15

5 11 17

 .
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Vectorization. We can create a vector from any matrix or tensor by stacking the row

or column elements into a row or column vector, respectively. For example, vectorizing

the tensor X by its columns would yield the column vector

vec(X) =



2

4

...

15

17


,

where we stack the columns from the first frontal slice, X1, and then the second frontal

slice, X2. The dimensions of the resulting vector would be x ∈ R18. Throughout this

thesis, we will use vec(·) to denote vectorization as an operator and will assume that

this operator performs column-wise stacking unless stated otherwise.

A Property of the Vec Operator. One important property of the vec(·) operator

is that given three matrices A ∈ Rq×n1 , B ∈ Rn1×n2 , and C ∈ Rn2×r, the vectorization

of the product of these three matrices yield

vec(ABC) = (C> ⊗A) vec(B). (2.1)

This property is useful for problems where one needs to isolate one of the matrices from

a product of matrices. Note that if you needed to isolate the matrix A instead of the

matrix B, one could multiply the left-hand side of the product with an identity matrix

and then use this property to obtain

vec(IqABC) = ((BC)> ⊗ Iq) vec(A). (2.2)

Matricization. We can also create a matrix from a tensor by stacking the columns

from the n-th mode of the tensor. For example, the three matricizations of the tensor

X would be

M1(X) =


2 8 14 1 7 13

4 10 16 3 9 15

6 12 18 5 11 17

 ,
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M2(X) =


2 4 6 1 3 5

8 10 12 7 9 11

14 16 18 13 15 17

 ,

M3(X) =

2 4 6 8 10 12 14 16 18

1 3 5 7 9 11 13 15 17

 ,
whereMn(·) denotes the n-th mode matricization operation. Note that since the tensor

X is a third-order tensor, there are three ways in which we can matricize X, one for

each mode.

2.3.2 Tensor Decompositions

Many data matrices that arise pervasively throughout data science exhibit an approx-

imate (or exact) low-rank structure [10]. Mathematically, this means that we can

decompose a matrix Y into a bi-linear form such that the error defined as

min
U,V
‖Y −UV>‖2F (2.3)

is small. Tensors also have low-rank structures, but the decomposition for tensors is

mathematically defined a bit differently. We discuss the two ways in which we can

decompose tensors in this section.

CANDECOMP/PARAFAC (CP) Decomposition. The CP (or Polyadic) decom-

position is a straightforward extension of matrix factorization to tensors. The objective

of the CP decomposition is to express a tensor as the sum of component rank-one ten-

sors, i.e. vectors, as depicted in Figure 2.1. For example, consider a third-order tensor

X ∈ Rn1×n2×n3 . The CP decomposition of the tensor X would yield

X =

R∑
r=1

ar ◦ br ◦ cr, (2.4)

where ar ∈ Rn1 , br ∈ Rn2 , cr ∈ Rn3 , R is the rank of the tensor, and ar ◦br represents

the outer product of vectors ar and br. The CP decomposition as an optimization

problem would mean finding the best X̂ given X such that the error

min
X̂
‖X− X̂‖, subject to X̂ =

R∑
r=1

ar ◦ br ◦ cr, (2.5)
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Figure 2.1: Depiction of the CANDECOMP/PARAFAC (CP) decomposition. The CP
decomposition factorizes a tensor into a sum of rank-one components.

is small. We will often refer to the collection of the rank-one tensors as the factor

matrices of the tensor. For example, the factor matrix A ∈ Rn1×R would be

A =
[
a1 a2 . . . aR

]
.

A Property of the CP Decomposition. Using the definition of the factor matrices,

we can formulate some useful properties of the CP decomposition. Given the CP

decomposition of a third-order tensor X with factor matrices A ∈ Rn1×R, B ∈ Rn2×R,

and C ∈ Rn3×R, we have the following relations:

M1 (X) = (C�B)A> (2.6)

M2 (X) = (C�A)B> (2.7)

M3 (X) = (B�A)C>. (2.8)

We would like to note that these relationships easily generalize to n-dimensional ten-

sors [9].

Tucker Decomposition. The Tucker decomposition can be viewed as a higher-order

analogue of the Singular Value Decomposition (SVD) [9]. It decomposes a tensor into

a core tensor, multiplied by factor matrices along each mode. For example, given a

third-order tensor X ∈ Rn1×n2×n3 , the Tucker decomposition of X would yield

X =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr ap ◦ bq ◦ cr (2.9)

= G×1 A×2 B×3 C, (2.10)
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Figure 2.2: Depiction of the Tucker decomposition. The Tucker decomposition factor-
izes a tensor into a product of a smaller tensor and factor matrices in each mode.

where G ∈ RP×Q×R is the core tensor, and A ∈ Rn1×P , B ∈ Rn2×Q, and C ∈ Rn3×R

are the factor matrices. One interesting (and also quite useful) fact about the Tucker

decomposition is that each factor matrix can have different ranks, i.e. P 6= Q 6= R,

whereas the factor matrices for the CP decomposition must have the same ranks. This

flexibility often makes the Tucker decomposition a more useful factorization, which we

will see later in this thesis.

A Property of the Tucker Decomposition. Similar to the CP decomposition, we

can formulate some useful relationships of the Tucker decomposition in terms of the

matricized forms of the tensor. Given the Tucker decomposition of a third-order tensor

X with core tensor G ∈ RP×Q×R and factor matrices A ∈ Rn1×P , B ∈ Rn2×Q, and

C ∈ Rn3×R, we have the following relations:

M1 (X) = AM1 (G)(C⊗B)> (2.11)

M2 (X) = BM2 (G)(C⊗A)> (2.12)

M3 (X) = CM3 (G)(B⊗A)>. (2.13)

We would like to note again that these relationships easily generalize to n-dimensional

tensors [9].
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Chapter 3

Machine Learning with Tensor Factorizations

3.1 Introduction

Machine learning refers to a set of statistical algorithms that we use to predict, classify,

and cluster data. These algorithms are widely used in many applications, examples

including disease prediction [11, 12], speech recognition [13], and product recommen-

dation [14, 15]. The objective of many of these statistical methods is to estimate

coefficients (or predictors) that best capture the relationship amongst the data sam-

ples. This relationship is quantified by a loss function, where each algorithm (generally)

has its own unique function. When the loss function involves some linear combination

of the weights and data points, we refer to the algorithm as a linear machine learning

algorithm. The linearity of these functions implicitly require each data sample to be a

vector, and otherwise need the data sample to be vectorized to fit these algorithms. In

the literature, there have been a lot of advancements that study the behavior of these

linear algorithms [16], as well as its sample complexity [17], and its performance.

Many applications of machine learning involve analyzing the relationship of data

samples that have intrinsically many dimensions [5, 18–20]. The objective of these

analyses is the same as that of traditional machine learning – we want to establish a close

association between the multidimensional (tensor) data samples and their outcomes.

However, as previously mentioned, most machine learning algorithms (if not all) are

formulated for vector-valued data. To fit these algorithms for tensor data, we need

to vectorize the data, which makes studying tensor data more challenging for several

reasons. Firstly, tensor-valued data in many real-world domains are usually very high-

dimensional. For example, in medical imaging, it is common to see tensor data samples

that are of dimensions 128×128×128 or even greater. If we vectorize these samples to fit
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Figure 3.1: Example of modeling observations: left – matrix, right – tensor

the traditional algorithms, this would mean estimating 1283 = 2097152 parameters! As

the number of dimensions increases, we not only need significantly more data samples,

but computation also becomes intractable. Secondly, and perhaps more importantly,

the vectorization of tensor data destroys its spatial structure, which can (and should) be

leveraged for accurate analysis. For example, consider a tensor as shown in Figure 3.1,

where users’ ratings of different movies are measured over time. If we wanted to use

machine learning to make movie recommendations to other users using this data, we

would need to vectorize the data, which reorders the data in such a way that a specific

user’s movie ratings over time no longer matches. Clearly, this incorrect reordering

could result in poor recommendations, making vectorization an inefficient modelling

scheme for tensor data.

To solve these challenges, we propose two algorithms that impose a tensor structure

on the weights of two machine learning algorithms used for classification. More specif-

ically, we assume that the weights of Logistic Regression and Support Vector Machine

(SVM) admit a CANDECOMP/PARAFAC (CP) decomposition, which allows us to

reduce the number of parameters that need to be estimated and exploits the structure

of the data. Unlike their traditional counterparts that use vanilla gradient descent for

optimization, these proposed algorithms, CP-Logistic Regression and CP-SVM, use an

alternating minimization method to update the factor matrices (weights). Under sev-

eral synthetic settings, we demonstrate the effectiveness of our algorithms for increasing

sample sizes and ranks. Since imposing this CP structure on the weights assume that
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the weights (and consequently, the data) are low-rank, we simulate an exact and an

approximate low-rank setting and record their performances. In all of these settings, we

observe that CP-Logistic Regression and CP-SVM outperforms the traditional machine

learning algorithms for several different metrics.

3.2 Related Work

In the literature, there are several related works that exploits the low-rank structure of

the data by imposing some factorization technique [21–24]. We were heavily inspired

by the results of Zhou et al. [21], where the authors proposed a family of tensor re-

gression models that also imposed a CP decomposition on the weights. Their approach

included a mixture of maximum likelihood and alternating minimization to estimate

the parameters of the density of the exponential family and the factor matrices, respec-

tively. Motivated by their results on medical data, we pursued in adopting their ideas

for classification models with tensor data.

The work most closely related to the ideas presented in this chapter is the work

by Tan et al [25]. Tan et al. proposed a logistic regression model that imposed a CP

decomposition on the weights of this model. Their algorithm involved using alternating

minimization with an `1 regularization term on the objective function to solve for

sparse factor matrices. We were unaware of this work before we dove into looking at

classification problems with tensor structure; we routed around this issue by answering

questions that the authors did not consider, such as the behavior of these algorithms

under approximate low-rank settings. We also showed empirical results using an `2

regularizer, and made our code publicly available on Github. Lastly, we also proposed

an tensor-based model for Support Vector Machine (SVM), which Tan et al. does not

consider in their work.
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3.3 Unstructured Machine Learning

In this section, we give a quick primer on two linear machine learning classification

algorithms: Logistic Regression and Support Vector Machines. We interchangeably re-

fer to these algorithms as traditional, unstructured, or vectorized algorithms, as these

methods do not assume any structure and vectorizes the data. We provide some in-

tuition behind these machine learning algorithms and show how these algorithms are

posed as optimization problems.

3.3.1 Logistic Regression

Logistic Regression is very similar to Linear Regression [26], where we consider a linear

model of the form

yi = w>xi + b, i = 1, . . . , n. (3.1)

In Linear Regression, our objective is to find the weights, w, and bias, b, such that

we can accurately predict the dependent variables yi given independent variables xi.

The dependent and independent variables can take on any continuous value. However,

Logistic Regression is a binary classification algorithm, where the dependent variable

yi can only take on discrete values yi ∈ {0, 1}. We need to modify the linear model in

such a way that we can predict discrete yi values instead of continuous ones.

Instead of directly predicting discrete values yi ∈ {0, 1}, Logistic Regression pre-

dicts the probabilities that a data sample xi belongs to either 0 or 1. We do this by

“regressing” on the log-odds of the probabilities rather than yi itself. Formally, the

linear model now becomes

log

(
P(yi = 1)

P(yi = 0)

)
= w>xi + b, i = 1, . . . , n. (3.2)
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Rearranging equation (3.2) for P(yi = 1) and P(yi = 0), we obtain

P(yi = 1) = σ(w>xi + b) (3.3)

=
1

1 + exp(−(w>xi + b))
(3.4)

P(yi = 0) = 1− P(yi = 1) (3.5)

=
1

1 + exp(w>xi + b)
, (3.6)

where σ(·) is the sigmoid function. The objective of Logistic Regression is to estimate

the predictors (or weights) w and bias b that maximizes these two probabilities. Once

we obtain the weights and bias terms, we can make predictions by plugging in xi into

equation (3.3) and deciding yi = 1 if P(yi = 1) ≥ τ or yi = 0 if P(yi = 1) < τ , for some

threshold τ .

The main challenge now is to find a way to estimate the predictors that maximizes

the probabilities. We can do this by finding the weights that minimizes the logistic loss

function

`(yi,xi,w, b) =
n∑
i=1

−yi log(ŷi)− (1− yi) log(1− ŷi), (3.7)

where ŷi = σ(w>xi + b). Note that we can rewrite `(·) into a more compact form, as

`(yi,xi,w, b) =
n∑
i=1

log(1 + exp (−yi(w>xi + b))). (3.8)

Now, using equation (3.8) and given data {(xi, yi)}ni=1, we can formulate Logistic Re-

gression as the optimization problem

ŵ, b̂ = argmin
w,b

n∑
i=1

log(1 + exp (−yi(w>xi + b))) + λ‖w‖2. (3.9)

Since there is no closed-form solution for this optimization problem, we need to use

techniques such as gradient descent to estimate these parameters. Note that the term

λ‖w‖2 in the objective function is a regularizer that induces sparsity in w.

3.3.2 Support Vector Machines

Support Vector Machine (SVM) is both a linear and non-linear classification algorithm

that predicts whether a data sample xi belongs to yi ∈ {−1,+1}. In this chapter,
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we will focus on linear SVM, where we again consider the hyperplane yi = w>xi + b.

Recall that in Logistic Regression, we estimated the predictors w and b by minimizing

the logistic loss function. SVM minimizes a loss function called the hinge loss function,

where we penalize according to the distance of the data sample xi to the hyperplane.

Mathematically, the hinge loss function for linear SVM is defined as

`(yi,xi,w, b) = max[0, 1− yi(w>xi + b)] (3.10)

The intuition behind this loss function is that we want to find the predictors that best

separates the two classes of data, while making minimal violations. Note that the hinge

loss function will return a value of 0 – which corresponds to making no violations –

if yi(w
>xi + b) ≥ 1. Also note that the distance from a point xi to a hyperplane

is measured by the equation yi(w
>xi+b)
‖w‖2 . If we assume without loss of generality that

‖w‖2 = 1, then the hinge loss function corresponding to linear SVM only penalizes when

the distance from the data point and the hyperplane is less than 1. Hence, minimizing

this loss function equates to finding the coefficients such that the distance between the

hyperplane and the data sample xi is as far away as possible. The data samples that

are closest to the boundary (or hyperplane) are called the “support vectors”, since they

primarily determine the boundary that yields the smallest amount of mis-classifications.

Formulating this idea mathematically, we have the following optimization problem:

ŵ, b̂ = argmin
w,b

n∑
i=1

max[0, 1− yi(w>xi + b)] + λ‖w‖2. (3.11)

Similar to Logistic Regression, we need to use optimization techniques such as gradient

descent to estimate these parameters. Once we estimate these parameters, we can

simply look at which side of the hyperplane the data sample lies on, i.e. w>xi + b ≥ 0

or w>xi + b < 0, to determine its label.

3.4 Tensor-Structured Machine Learning

In this section, we show how we can reformulate the optimization problem for both

Logistic Regression and SVM to exploit the structure of tensor data. To do this, we

impose a CP decomposition on the weights that we solve for an alternating minimization

method. We discuss these techniques in detail in the following sections.
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3.4.1 CP-Structured Logistic Regression

Recall that the objective of Logistic Regression is to estimate the predictors w and b

such that the error given by

min
w,b

n∑
i=1

log(1 + exp (−yi(w>xi + b))) + λ‖w‖2 (3.12)

is small. This formulation implicitly requires the data samples xi (and consequently w)

to be vectorized. Now, consider a tensor dataset {(Xi, yi)}ni=1, where Xi ∈ RD1×...×DN

and yi ∈ {0, 1}. Instead of vectorizing the tensor data sample Xi to fit Equation 3.12,

we can reformulate this equation by imposing the CP decomposition on w as follows:

min
w1,...,wN

n∑
i=1

log

(
1 + exp

(
−yi

〈
R∑
r=1

W1,r ◦ . . . ◦WN,r,Xi

〉))
. (3.13)

This new optimization problem, which we call CP-Logistic Regression, involves esti-

mating N factor matrices, one for each dimension. On the face of this problem, it may

seem like we are estimating even more parameters than before. To see why this is not

true, consider each tensor data sample Xi to be of dimensions Xi ∈ R100×100×100. If we

choose the rank to be 5, i.e. R = 5, then CP-Logistic Regression involves estimating

a total of 1500 parameters across all factor matrices, whereas the traditional Logistic

Regression algorithm estimates a total of 1000000 parameters! This is a significant

reduction in the number parameters, which empirically reduces the sample complexity

and also exploits the low-rank structure of the data. The remaining challenge lies in

how we estimate these N factor matrices. As previously mentioned, we use a technique

called alternating minimization, which we discuss in Section 3.4.3.

3.4.2 CP-Structured Support Vector Machines

Similar to Logistic Regression, recall that the objective of linear SVM is to solve for

the predictors that minimizes the function

min
w,b

n∑
i=1

max[0, 1− yi(w>xi + b)] + λ‖w‖2. (3.14)
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By imposing the CP decomposition on this loss function, we have the following refor-

mulation:

min
w1,...,wN

n∑
i=1

max

[
0, 1− yi

(〈
R∑
r=1

W1,r ◦ . . . ◦WN,r,Xi

〉)]
. (3.15)

We refer to this new formulation as CP-SVM. Similar to CP-Logistic Regression, we

discuss how we estimate these factor matrices in the next section.

3.4.3 Estimating the CP Factor Matrices

Unlike the traditional machine learning algorithms, the estimation of the factor matrices

is a non-trivial task. To solve for these matrices, we adopt an alternating minimization

scheme proposed by Zhou et al. [21]. The alternating minimization method involves

optimizing over one variable while keeping the others fixed. This step is briefly outlined

in Algorithm 1. Using this for our CP-structured algorithms, we need to rewrite the

inner product 〈
R∑
r=1

W1,r ◦ . . . ◦WN,r,Xi

〉
(3.16)

that is present in both CP-Logistic Regression and CP-SVM. We can do this by us-

ing the property of the CP decomposition stated in Section 2.3.2. Specifically, when

updating factor matrix Wi, we rewrite the inner product as〈
R∑
r=1

W1,r ◦ . . . ◦WN,r,Xi

〉
= 〈Wi,Mi (X)(WD � . . .�Wi+1 �Wi−1 � . . .�W1)〉

(3.17)

This allows us the single out the factor matrix that we want to optimize over, making

computation simpler when using built-in optimizers in Python and MATLAB.

There are a couple key advantages in using the alternating minimization algorithm.

First, in the literature, this algorithm has been shown to almost always converges

to at least a local minimum [21, 27, 28]. To find the best solution, the algorithm

can be ran several times with different initial factor matrices. Second, the low-rank

optimization problem over the factor matrices is non-convex [29]. Thus, this problem

becomes difficult to solve using common unconstrained solvers, such as gradient descent.



17

Algorithm 1 Alternating Minimization for Estimating CP Factors [21]

Require: Data X ∈ RD1×...×DN : {(Xi, yi)}ni=1; Loss function: f(Xi, yi,Ai); Rank: R;
Regularization parameter: λ; Iterations: T

1: Randomly Initialize: Ai ∈ RDi×R for i = 1, . . . , N
2: for t = 1, . . . , T do
3: for i = 1, . . . , N do
4: At+1

i = argmin
Ai

∑n
j=1 f(Xj , yj ,A

t+1
1 , . . . ,At+1

i−1,Ai,A
t
i+1, . . . ,A

t
N ) + λ‖Ai‖2

5: end for
6: end for

Ensure: A1,A2, . . . ,AN

In the literature, there are two ways to handle the non-convexity of this optimization

problem. One way is to relax the rank constraint by adding a convex regularization term

that induces low-rank (e.g. trace norm, nuclear norm) [30, 31]. The other solution is to

employ this alternating minimization algorithm, as the optimization over one matrix,

while holding the others fixed is convex. We chose to explore this procedure following

Zhou et al. [21], as the algorithm is straightforward to implement using statistical

software and packages in MATLAB or Python.

3.5 Numerical Experiments

We compare the performance of CP-Logistic Regression and CP-SVM with the tradi-

tional Logistic Regression and SVM algorithms presented in Section 3.3. We use both

synthetic data and the MNIST dataset [32] to observe how the performance of these

algorithms vary as we increase the available number of data samples and the rank of

the CP-structured algorithms. To quantitatively compare these algorithms, we use the

following metrics:

1. (Normalized) Mean Squared Error (MSE):

MSE =
1

n
‖w − ŵ‖22, (3.18)

where n is the total number of data samples, w are the true weights, and ŵ are

the reconstructed weights.
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2. Cosine Distance (or Cosine Similarity) [33]:

cos(θ) =
〈w, ŵ〉

‖w‖2 · ‖ŵ‖2
, (3.19)

where w are the true weights and ŵ are the reconstructed weights. The cosine

distance measures the cosine of the angle between two vectors in n-dimensional

space. Two vectors will have a cosine distance of 0 if they are perpendicular, and

a value of 1 if the direction of the vectors is identical.

3. Prediction Accuracy:

Accuracy =
# of correct predictions

# total number of samples (n)
. (3.20)

Lastly, recall that we added an `2 regularizer to all of the algorithms. We used cross-

validation to compute the regularization parameter, which were λ = 10−5 for the CP-

structured algorithms and λ = 10−2 for the traditional algorithms.

Experiments with Synthetic Data. The main objective of the experiments with

synthetic data was to show the advantages of the CP-structured algorithms when the

predictors had an exact low-rank structure. We generated synthetic data according to

the model

yi = sign(〈β,Xi〉+ ε), (3.21)

where Xi ∈ R15×15 with entries drawn independently and identically distributed from

N (0, 1), εi ∼ N (0, 1), and β ∈ R15×15 was fixed to be a cross as shown in Figure 3.3.

This cross has a rank of 2, and we use this as the value of the rank for our CP-structured

algorithms. Note that with a rank value of 2, the CP-structured algorithms both have

a total of 60 parameters, whereas the traditional algorithms have a total of 225 param-

eters. Our hypothesis was that the CP-structured algorithms would outperform the

traditional algorithms when the number of available samples was more limited, as there

are less parameters that needed to be estimated. In Figure 3.2, we can observe the va-

lidity of this hypothesis. As the sample sizes increase, the performance of the traditional

machine learning algorithms converges to that of the CP-structured algorithms.



19

500 1000 1500 2000 2500 3000

Sample Size

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
ea

n
Sq

ua
re

d
E

rr
or

(M
SE

)

CP LOGIT
Vectorized LOGIT

500 1000 1500 2000 2500 3000

Sample Size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
os

in
e

D
is

ta
nc

e

CP LOGIT
Vectorized LOGIT

500 1000 1500 2000 2500 3000

Sample Size

75

80

85

90

95

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

CP LOGIT
Vectorized LOGIT

500 1000 1500 2000 2500 3000

Sample Size

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
ea

n
Sq

ua
re

d
E

rr
or

(M
SE

)

CP SVM
Vectorized SVM

500 1000 1500 2000 2500 3000

Sample Size

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
os

in
e

D
is

ta
nc

e

CP SVM
Vectorized SVM

500 1000 1500 2000 2500 3000

Sample Size

75

80

85

90

95

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

CP SVM
Vectorized SVM

Figure 3.2: Performance comparison between CP-structured methods and traditional
methods with increasing sample sizes for three different metrics: normalized MSE,
cosine distance, and prediction accuracy (%). Row 1: Comparison between CP-LOGIT
and traditional LOGIT. Row 2: Comparison between CP-SVM and traditional SVM.

In Figure 3.3, we can visually see the change in the reconstruction of the cross for

different sample sizes. However, even when the number of samples is approximately 13

times number of parameters (n = 3000), the solved predictors from traditional Logistic

Regression is still visually far from the original cross, whereas the predictors from CP-

Logistic Regression is visually much closer. This highlights the effectiveness of the

CP-structured algorithms that takes the low-rank property into consideration during

optimization.

Experiments with MNIST Data. The experiments with the synthetic dataset

showed the change in performance metrics for a fixed predictor that had an exact low-

rank structure. The remaining question that we need to answer is how these metrics

behave for a predictor that is approximately low-rank and the effect of not knowing

the rank a priori. To simulate an approximately low-rank predictor, we took a “one”

from the MNIST dataset, fixed the digit as our predictor, generated data according

to Equation (3.21) and observed how the metrics changed for different values of the

rank for a fixed sample size. We record the metrics in Table 3.1 and display the visual
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Algorithm Rank MSE Cosine Distance Accuracy (%)

Vectorized LOGIT 0.000125 0.875 84.2

CP LOGIT r = 3 0.000134 0.866 80.4
r = 4 0.0000707 0.929 85.6
r = 5 0.0000518 0.948 87.4
r = 6 0.0000534 0.947 86.4

Vectorized SVM 0.000115 0.885 83.8

CP SVM r = 3 0.000147 0.853 80.2
r = 4 0.0000847 0.915 85.2
r = 5 0.0000657 0.937 88.0
r = 6 0.0000584 0.942 89.8

Table 3.1: Numerical comparison between CP-structured methods and traditional
methods with increasing ranks for three different metrics: normalized MSE, cosine
distance, and prediction accuracy (%). These metrics were averaged over 5 runs for a
sample size of 2000.

reconstructions in Figure 3.4. In Table 3.1, we observe that a rank of 3 is insufficient

for accurately estimating the MNIST digit, as the performance across all metrics is

lower than that of the traditional algorithms. A rank value of r = 5, 6 seem to be

the best performing values, as the errors are both numerically and visually lower. As

the ranks increase, we hypothesize that the performance will eventually degrade, as

the number of parameters for the CP-structured algorithms converge to that of the

traditional algorithms, similar to the phenomenon we saw in the previous synthetic

experiment.

3.6 Conclusion and Future Work

In this chapter, we investigated tensor-based classification models using a CANDE-

COMP/PARAFAC factorization structure on the predictors of traditional machine

learning algorithms, namely Support Vector Machines and Logistic Regression. Im-

posing these structures allowed us to exploit the structure of the data, while solving

for fewer parameters. We showed with different performance metrics that our pro-

posed method overall estimated a more accurate reconstruction of the weights. The

experiments showed that the CP-structured algorithms performed best when the true

predictor had either an approximate or an exact low rank structure. The most relevant

direction to extend the ideas presented in this chapter is to explore classification models
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using the Tucker decomposition. The Tucker decomposition allows for more flexibility

in the choices of the ranks, which may be beneficial to tensor data such as RGB images.

We believe it would be interesting to show that the Tucker-structured algorithms also

increases the same performance metrics under both an exact and approximate low-rank

structure.
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Original Cross Vec-LOGIT (n = 500) CP-LOGIT (n = 500)

Vec-LOGIT (n = 1000) CP-LOGIT (n = 1000)
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Vec-LOGIT (n = 3000) CP-LOGIT (n = 3000)

Figure 3.3: Visual comparison of CP-Logistic Regression (CP-LOGIT) and traditional
Logistic Regression (Vec-LOGIT) when the predictors exhibit an exact low-rank struc-
ture with increasing sample sizes.
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Original MNIST Vectorized SVM CP SVM r = 3

CP SVM r = 4

CP SVM r = 5

CP SVM r = 6

Figure 3.4: Visual comparison of CP-Support Vector Machine (CP-SVM) and tradi-
tional Support Vector Machine (Vec-SVM) when the predictors exhibit an approximate
low-rank structure with increasing ranks for a sample size of 2000.
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Chapter 4

Low-Rank Phase Retrieval with Structured Tensor Models

4.1 Introduction

Many practical applications involve solving systems of linear equations, where the ob-

jective is to estimate a signal x ∈ Cn given sampling vectors ai ∈ Cn and observations

of the form

yi = 〈ai,x〉, i = 1, . . . ,m. (4.1)

This problem has been extensively studied in the literature and there are many different

ways in solving these systems of linear equations in both under and over-determined

cases (i.e. m � n and m � n) [34]. However, if we posed this problem in such a way

that we have no prior information about the signs or phases of 〈ai,x〉, the problem

becomes significantly more difficult. This problem is commonly referred to as phase

retrieval (or quadratic sensing), where the objective to recover x ∈ Cn given sampling

vectors ai ∈ Cn and observations of the form

yi = |〈ai,x〉|, i = 1, . . . ,m, (4.2)

or equivalently, yi = |〈ai,x〉|2. Phase retrieval arises from a wide range of imaging

domains such as X-ray crystallography [35], Fourier ptychography [36, 37], and astron-

omy [38]. In each of these domains, the measurement acquisition process generally

involves an optical sensor that captures the diffracted patterns of the object of inter-

est. However, the physical limitations of these sensors only allow us to observe the

intensities (or magnitudes) of these patterns, leading to the quadratic system.

The importance of solving the phase retrieval problem in these imaging domains

have led to many convex and non-convex solutions, such as the Gerchberg-Saxton algo-

rithm [39], PhaseLift [40], AltMinPhase [3], and the variants of Wirtinger Flow [2, 41,
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42], to name a few. However, the theoretical guarantees of all existing methods require

the system to be over-determined (i.e. m� n). This requirement, which is considered

to be the bottleneck of phase retrieval, mainly comes from the non-convex nature of

the problem. In order to converge to the optimal solution, one needs enough samples

to guarantee that the initial estimate of the signal is close to the true signal with high

probability. This initial estimation step is called spectral initialization, where the term

“spectral” comes from the use eigenvectors (or singular vectors) of properly designed

matrices from data [43]. This step has been shown to be essential for solving the phase

retrieval problem, and many variants of this step have been proposed in the literature.

Recently, there has been a surge of interest in solving the low-rank phase retrieval

problem [44–48]. This problem can be viewed as a dynamic extension of the standard

phase retrieval problem, where the objective is to recover a matrix of vectorized images

rather than a single image. Formally, we want to estimate a low-rank matrix X ∈ Cn×q,

where X = [x1,x2 . . . ,xq] with xk ∈ Cn, given sampling matrices Ak ∈ Cn×m and

measurements

yk = |A∗kxk|, k = 1, . . . , q. (4.3)

In this problem formulation, we assume that there is a separate, independent set of

sampling matrices Ak for each signal xk. Unlike the phase retrieval problem, this

problem has several solutions that have strong theoretical guarantees even for the under-

determined setting (i.e. m � n). These algorithms exploit the low-rank property of

the matrix X with the extra set of sampling matrices in order to naturally reduce the

sample complexity. However, our empirical results suggest that there is perhaps a gap

between theory and practice, and that these solutions fail to accurately recover the

images in the under-determined setting. In fact, in this setting, we observe that these

algorithms often do not converge.

To overcome this challenge, we propose an algorithm called Tucker-Structured Phase

Retrieval (TSPR) that models the sequence of images as a tensor rather than a matrix.

With a tensor model, we can decompose the tensor using the Tucker decomposition [9]

to estimate fewer parameters than the matrix counterpart. The reduction in the number
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of parameters also decreases the number of degrees of freedom, allowing the recovery

of the sequence of signals possible with a smaller sample complexity. To demonstrate

the effectiveness of our approach, we conduct experiments on real video datasets with

measurements generated from real and complex Gaussian vectors and coded diffraction

patterns. Our results show that in all of these measurement settings, our algorithm

outperforms existing algorithms in both the under and over-determined regimes.

4.2 Related Work

4.2.1 Phase Retrieval

To the best of our knowledge, the most notable approaches for solving the classical phase

retrieval problem are the variants of Wirtinger Flow, specifically Truncated Wirtinger

Flow (TWF) [41] and Reshaped Wirtinger Flow (RWF) [42]. These two methods extend

the main ideas from the original Wirtinger Flow (WF) algorithm by Candès et al. [2]

by making a few algorithmic modifications. These modifications reduce the sample

complexity of recovering the true signal from measurements Ω(n log(m)) in WF to

Ω(n) in TWF and RWF under the Gaussian measurement assumption.

Since low-rank phase retrieval is simply a dynamic extension of the classical phase

retrieval problem, one might wonder why we cannot just use the existing WF algorithms

to solve for each image xk ∈ Rn in the low-rank matrix X. While this is a very plausible

solution, this solution would only work if we had m ≥ Cn for some C > 1 measurements

for each xk. Hence, this method would not be solving the low-rank phase retrieval

problem in the under-determined regime, which is what we are aiming to solve in this

chapter. Additionally, this would not be using the low-rank structure of the matrix

X along with the extra set of sampling matrices, which is what we ultimately want to

prudently leverage to reduce the sample complexity.
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4.2.2 Unstructured Low-Rank Phase Retrieval

There are several provably efficient algorithms for solving the low-rank phase retrieval

problem that vectorize each image and recover a low-rank matrix. We call such meth-

ods “unstructured” because they assume no structure in the images. Recently, Nayer et

al. proposed AltMinLowRaP [45], an algorithm that theoretically improved their previ-

ous algorithm AltMinTrunc [44, 47], that both solved the unstructured low-rank phase

retrieval problem. AltMinLowRaP involved alternately minimizing the factor matrices

U ∈ Cn×r and B ∈ Cq×r that constructed the low-rank matrix X = UB∗. Updating

the factor matrix U consisted of minimizing the objective function

argmin
U

∑
k

‖Ckyk −A∗kUbk‖22 , (4.4)

where bk is the k-th row of the matrix B and Ck is a diagonal phase matrix. Note

that this objective function sums over all of the columns in X, as the k-th column of

X can be written as xk = Ubk. The intuition behind this summation can be viewed

as each of the vectorized images xk differing by bk, while sharing the same span(U).

Optimizing for U involved minimizing this objective function using conjugate gradient

least squares (CGLS) while keeping bk fixed. The factor matrix B was initialized and

updated by solving an r-dimensional noisy phase retrieval problem for each row of B,

bk. To see this, note that we can rewrite each of the measurements as

yi,k = |〈ai,k,xk〉| (4.5)

= |〈ai,k,Ubk〉| = |〈U∗ai,k,bk〉|. (4.6)

Given an estimate of U, we can solve for each bk using any phase retrieval method,

such as Reshaped Wirtinger Flow (RWF) [42]. Thus, AltMinLowRaP runs RWF q

times (once for each image) to estimate bk given the sampling matrix U∗ai,k. Lastly,

upon updating the matrix U and each vector bk, the phase matrices were also updated

by taking the phases of xk = Ubk by

Ck = Diag(Phase(A∗kUbk)). (4.7)

Due to the non-convex nature of this problem, the factor matrix U was initialized

via a spectral method, as previously done in WF [2] and TWF [41]. The matrix U was
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initialized by taking the top r eigenvectors of the surrogate matrix

Y =
1

mq

m∑
i=1

q∑
k=1

y2i,kai,ka
∗
i,k1{y2i,k≤

α2

mq

∑
t,v y

2
t,v}

, (4.8)

for some trimming threshold α. The intuition behind this matrix is that given enough

samples, the expectation of this matrix is equivalent to

E[yi,kai,ka
∗
i,k] = 2xkx

∗
k + ‖xk‖2In. (4.9)

Thus, the subspace spanned by the top r eigenvectors of Y can recover exactly U. The

double summation over the measurements and samples in the surrogate matrix and

truncation is what guaranteed AltMinLowRaP a smaller sample complexity over exist-

ing methods. Our algorithm is an improvement over AltMinLowRaP that empirically

works better in both the under and (some) over-sampled regimes. Although our algo-

rithm does not yet have a theoretical analysis of the sample complexity, our empirical

results show that our algorithm can work better in practice.

4.3 Tensor Structured Low-Rank Phase Retrieval

As previously mentioned, one natural way of reducing the sample complexity is to

estimate less parameters by assuming an additional low-rank structure on each of the

vectorized images xk. In order to impose this structure, we need to model the sequence

of q images as a tensor by reshaping and stacking each of the vectorized images from

xk ∈ Cn into Xk ∈ Cn1×n2 , where n = n1n2. The objective of TSPR is to recover this

tensor X ∈ Cn1×n2×q given measurements yk and sampling matrices Ak, where X can

be factorized using either the Tucker or the CP decomposition.

For low-rank phase retrieval, the Tucker decomposition is more suitable than the CP

decomposition, as it allows flexibility in our choices of the ranks. We need this flexibility

since the structure of each image Xk may not exactly be low-rank, whereas the temporal

dimension will most likely be low-rank. The Tucker decomposition allows the rank of

each mode to be different, making it more appropriate than the CP decomposition.

Now, using the Tucker formulation, the objective of TSPR is to estimate the factors
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G ∈ Cr1×r2×r3 , D ∈ Cn1×r1 , E ∈ Cn2×r2 , and F ∈ Cq×r3 that make up the tensor X as

X = G×1 D×2 E×3 F. (4.10)

We want to solve for these factors by first initializing them via a spectral method and

then estimating them using alternating minimization and CGLS.

4.3.1 Spectral Initialization

The idea behind our spectral initialization step is to construct a tensor that is close

to the true tensor X with high probability. Once we construct this tensor, we can use

higher-order SVD (HOSVD) [49] to initialize our core tensor and factor matrices. To

do this, we adopt the initialization technique of Truncated Wirtinger Flow (TWF) [41]

to obtain an initial estimate of the vectorized image xk. Specifically, we want to first

take the leading eigenvector of the constructed matrix

Yk =
m∑
i=1

y2i,kai,ka
∗
i,k1{|yi,k|2≤α2λ2k}

, (4.11)

where

λk =

√√√√ 1

m

m∑
i=1

yi,k. (4.12)

If zk is the leading eigenvector of Yk, we compute the initial estimate of xk as

xk =

√
mn∑m

i=1‖ai,k‖22
λkzk, (4.13)

which appropriately normalizes zk to approximately have the same norm as xk. Upon

computing each xk for k = 1, . . . , q, we reshape xk back into its original dimensions and

stack them to create the initial tensor. This initialization step is outlined in Algorithm 2.

4.3.2 Alternating Minimization

Upon initialization, we can alternately update the core tensor and each factor matrix

using CGLS and RWF. Recall that in AltMinLowRaP, we minimized an objective func-

tion that was formed by plugging in xk = Ubk. Similarly, we can minimize the same
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Algorithm 2 TSPR Initialization

Require: Observations: {yi,k | 1 ≤ i ≤ m, 1 ≤ k ≤ q}; Sampling vectors: {ai,k | 1 ≤ i ≤
m, 1 ≤ k ≤ q}; Trimming threshold: α; Ranks: = [r1, r2, r3]

1: for k = 1, . . . , q do

2: Compute λk =
√

1
m

∑m
i=1 yi,k.

3: Compute zk as leading eigenvector of

Yk =

m∑
i=1

y2i,kai,ka
∗
i,k1{|yi,k|2≤α2λ2k}

4: Compute xk =
√

mn∑m
i=1‖ai,k‖22

λkzk.

5: Reshape xk ∈ Cn into Xk ∈ Cn1×n2 .
6: end for
7: Stack tensor into X = [X1,X2, . . . ,Xq]
8: Initialize factors using HOSVD:

D0,E0,F0,G0 = HOSVD(X, ranks)

Ensure: D0,E0,F0,G0

function, but by rewriting xk using our Tucker factors. In specific, we can write each

xk as

xk = (fk ⊗E⊗D)vec(G), (4.14)

where fk is the k-th row of the factor matrix F. The reason behind writing xk in terms

of fk is the same reasoning used for the unstructured case – each image xk differs by

fk. By plugging in xk, the update step of the core tensor G involves minimizing the

function

∑
k

‖Ckyk −A∗k(fk ⊗E⊗D)vec(G)‖22 . (4.15)

We use CGLS to update the vectorized form of G given matrix A∗k(fk ⊗ E ⊗D) and

reshape it before the next update step. Now, in order to use CGLS for matrices D and

E, we need to rewrite xk in such a way that we have vec (D) and vec (E) are on the

right-hand side as in Equation (4.15). To do this, we can use the property of the vec (·)

operator as mentioned in Section 2.3.1. Using this property, the update step for factor
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Algorithm 3 Tucker-Structured Phase Retrieval (TSPR)

Require: Observations: {yi,k | 1 ≤ i ≤ m, 1 ≤ k ≤ q}; Sampling vectors: {ai,k | 1 ≤
i ≤ m, 1 ≤ k ≤ q}; Initial factors: D0,E0,F0,G0; Iterations: T ; RWF Iterations:
TRWF

1: for t = 1, . . . , T do
2: for k = 1, . . . , q do
3: Update f t+1

k = RWF([Dt,Et,Gt,A∗k],yk, TRWF )
4: Compute xt+1

k = (f t+1
k ⊗Et ⊗Dt)vec(Gt)

5: Update diagonal phase matrix Ct+1
k = Diag(Phase(A∗kx

t+1
k ))

6: end for
7: Update Dt+1, Et+1, Gt+1 by minimizing (4.15)
8: end for
9: Reconstruct tensor XT = GT ×1 DT ×2 ET ×3 FT

Ensure: XT

matrix D involves minimizing the objective function∑
k

‖Ckyk −A∗k(S
∗
k ⊗ In1)vec(D)‖2 , (4.16)

where Sk =M1(G)(fk ⊗E)∗. Similarly, we can follow the same steps for factor matrix

E. Using the same property, the update step for factor matrix E involves minimizing

the objective function ∑
k

‖Ckyk −A∗k(In2 ⊗T∗k)vec(E∗)‖2 , (4.17)

where Tk =M2(G)(fk ⊗D)∗. To update each row vector fk, note that we can rewrite

yi,k as

yi,k = |〈ai,k,xk〉| (4.18)

= |〈ai,k,M3(G)(E⊗D)∗fk〉| = |〈M3(G)(E⊗D)∗ai,k, fk〉|. (4.19)

With this formulation, updating each fk simplifies to solving a noisy r-dimensional

phase retrieval problem with sampling matrix M3(G)(E ⊗ D)∗ai,k. We can use any

classical phase retrieval method to solve for fk, but we use RWF [42] to directly compare

to AltMinLowRaP. This update step is summarized in Algorithm 3.

4.4 Numerical Experiments

We compare the performance of TSPR with two closely related algorithms, AltMinTrunc

and AltMinLowRaP, using one synthetic dataset and two real video datasets, Mouse
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and Plane. We consider measurements generated by real Gaussian matrices, complex

Gaussian matrices, and coded diffraction patterns (CDP). To quantitatively compare

these algorithms, we use the phase-invariant matrix distance [45] defined as

mat-dist2(X̂,X) =

q∑
k=1

dist2(x̂k,xk), (4.20)

where X is the true matrix, X̂ is the reconstructed matrix and

dist(x̂,x) = min
φ∈[0,2π]

‖x− e
√
−1φx̂‖. (4.21)

Note that the distance metric above is written in terms of the columns of the matrices

X and X̂. Some of the results went through a “model correction” step as proposed by

Nayer et al. [45]. The model correction step is running any phase retrieval algorithm

for each xk for k = 1, . . . , q given matrices Ak and measurements yk. This step can be

viewed as the low-rank phase retrieval algorithm being a “warm start” for the classical

phase retrieval algorithm, refining the signals where needed. We also provide a recon-

struction of the videos as a supplement (available on Github) and display single frames

in this thesis.

Experiments with Synthetic Data: The first experiment that we conducted was

with the MNIST dataset [32], and it served to convince us that modelling the images

as a tensor for the under-sampled regime was indeed a good idea. We took the first 50

images of the digit “1” from the MNIST dataset and stacked them to create a tensor

X ∈ R28×28×50. We then generated measurements according to the model

yk = |A∗kvec(Xk)|, k = 1, . . . , q, (4.22)

where each column of Ak was drawn from ai,k ∼ N (0, I) (real Gaussian distribution).

Upon recovering the tensor X using TSPR, we observed that the reconstructed images

were clearer than existing methods, along with the numerical errors being smaller. We

display one frame of the reconstructed tensor in Figure 4.1 and show the numerical

errors and number of measurements in Table 4.1.

Experiments with the Mouse Dataset: The mouse dataset is a video of a mouse

moving slowly towards a camera, provided by Nayer et al. [45]. The mouse video
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Original TSPR AltMinLowRaP AltMinTrunc

Figure 4.1: Results from recovering a stack of MNIST ones digits from real Gaussian
measurements.

consisted of 90 frames, where each frame was downsized to be of dimensions 40 × 80.

Upon constructing the tensor X ∈ C40×80×90, we generated measurements according to

the model

yk = |A∗kvec(Xk)|, k = 1, . . . , q, (4.23)

where each column of Ak was drawn either from ai,k ∼ N (0, In) or ai,k ∼ CN (0, In) (cir-

cularly complex Gaussian distribution). We compare the three algorithms in two under-

determined settings under these measurements. The numerical results are recorded in

Table 4.1 with two of the reconstructed frames shown in Figure 4.2. In Table 4.1, we

can see that TSPR outperformed the other two algorithms in both under-determined

settings by estimating significantly less parameters. In fact, we observe that for two

different ranks, AltMinTrunc did not converge and had a resulting error that was signif-

icantly higher than the others. These values were obtained by running T = 20 iterations

of the total algorithm and TRWF = 25 where applicable. We would like to note that

each iteration of TSPR also runs several iterations of CGLS. For our experiments, we

ran TCGLS = 50 iterations, which results in a total of 1000 iterations, excluding the it-

erations from RWF. For the trimming threshold, we used a value of α = 3, as suggested

in TWF [41]. The ranks were generally chosen by trial and error, and the results did

not go through a model correction step, as it seemed to increase the errors both numer-

ically and visually. We would also like to note that even though TSPR yielded a lower

numerical reconstruction error, we can see in Figure 4.2 that the reconstructed image is

still not as clear as the original image. This is an intrinsic tradeoff of the Tucker model,
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Original TSPR AltMinLowRaP AltMinTrunc

Figure 4.2: Results from recovering a video of a moving mouse from complex Gaussian
measurements. Rows 1 and 2: reconstructed images of frames 60 and 70, respectively.

Original TSPR AltMinLowRaP AltMinTrunc

Figure 4.3: Results from recovering a video of a plane from CDP measurements. Rows
1 and 2: reconstructed images of frames 10 and 80, respectively.

as each frame may not be exactly low-rank. We want to choose the ranks corresponding

to the image dimensions (i.e. r1, r2) to be small so that we can get convergence up to

some modelling error, but not too small such that the reconstructed images are unclear.

Based on our experiments, we observed that for ranks r1 and r2, using ranks slightly

less than half of the dimensions of image (i.e. r1 < 0.5n1 and r2 < 0.5n2) worked well,

whereas for r3 (or r in the matrix model), we can be more conservative in our choices

and choose a value much smaller.

Experiments with the Plane Dataset: The plane dataset is a video of a plane slowly

landing on a runway, also provided by Nayer et al. [45]. The plane video consisted of

90 frames, where each frame was downsized to be of dimensions 40× 55 for efficiency.

Upon constructing the tensor X ∈ C40×55×90, we generated measurements according to
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Experiment Samples Algorithm Rank Distance

MNIST m ≈ 0.25n TSPR r = [10, 10, 3] 0.460
(Real Gaussian) AltMinLowRaP r = 3 0.610

AltMinTrunc r = 3 0.780

Mouse m = 0.25n TSPR r = [20, 25, 5] 2.851
(Real Gaussian) AltMinLowRaP r = 5 6.175

AltMinTrunc r = 5 7.277

Mouse m = 0.75n TSPR r = [20, 25, 5] 1.217
(Complex Gaussian) r = [20, 25, 10] 1.170

AltMinLowRaP r = 5 4.379
r = 10 3.435

AltMinTrunc r = 5 78.118
r = 10 77.319

Plane m = 2n TSPR r = [15, 20, 10] 0.437
(CDP) r = [20, 25, 10] 0.571

r = [30, 35, 10] 1.008
AltMinLowRaP r = 10 0.869

AltMinTrunc r = 10 0.894

Table 4.1: Results for the experiments with the Mouse and Plane datasets. The value
n refers to the dimensions of xk and m refers to the number of measurements generated
for each xk. The # of parameters value refers to the total number of parameters that
need to be solved for all images xk. The distance metric is the phase-invariant distance
defined in equation (4.20).

the CDP model

yl,k = |F̃Mlvec(Xk)|, l = 1, . . . , L, k = 1, . . . q, (4.24)

where F̃ is the discrete Fourier transform (DFT) matrix and M is a diagonal mask

matrix with elements drawn randomly from {1,−1, j,−j}. Since the CDP model can

only generate measurements m = Ln for each image for some integer L, the objective of

this experiment was to show the effectiveness of TSPR in the over-determined setting.

Upon running all three algorithms with the same parameters as the Mouse dataset,

each result went through a model correction step. In Figure 4.3, we see that while all

three algorithms can visually reconstruct the frames of this video, but Table 4.1 shows

that the error for TSPR is significantly lower. However, the errors are only lower for

certain values of the Tucker rank. This is most likely because as these ranks increase,

the total number of parameters slowly converge to that of the unstructured methods,

making recovery more difficult.
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4.5 Conclusion and Future Work

In this chapter, we showed that by modeling the sequence of images as a tensor, we can

obtain a more accurate reconstruction in both the under and over-sampled regimes.

Our algorithm, TSPR, adopted a mixture of optimization techniques from AltMin-

LowRaP and Truncated Wirtinger Flow to improve upon existing methods. TSPR

involved a spectral initialization method that used higher-order SVD with alternating

minimization via conjugate gradient least squares. Currently, TSPR lacks the theo-

retical guarantees in comparison to unstructured solutions. One important avenue for

future research can be to extend our algorithm but with theoretical guarantees on the

sample complexity required for accurate recovery. Our results show that there exist

Tucker-structured models with better performance; we believe that perhaps finding a

more principled approach for choosing these ranks is an important challenge for future

work.
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