
Learning Predictors from Multidimensional Data with
Tensor Factorizations

Soo Min Kwon, Anand D. Sarwate∗

Abstract

Statistical machine learning algorithms often involve learning a linear relationship
between dependent and independent variables. This relationship is modeled as a vector
of numerical values, commonly referred to as weights or predictors. These weights
allow us to make predictions, and the quality of these weights influence the accuracy of
our predictions. However, when the independent variable inherently possesses a more
complex, multidimensional structure, it becomes increasingly difficult to model the
relationship simply through a vector. In this paper, we address this issue by investigating
machine learning classification algorithms with multidimensional (tensor) structure. By
imposing tensor factorizations on the predictors, we can better model the relationship,
as the predictors would take the form of the data in question. We empirically show that
our approach works more efficiently than the traditional machine learning method when
the data possesses both an exact and an approximate tensor structure. Additionally,
we show that estimating predictors with these factorizations also allow us to solve for
fewer parameters, making computation more feasible for multidimensional data.

1 Introduction

Machine learning classification algorithms are widely used in many applications, examples
including fraud and spam detection. The objective of these algorithms is to model a linear
relationship between the independent (e.g. card transactions, amount spent) and dependent
(e.g. fraud or not fraud) variables. This relationship is generally modeled by finding a
hyperplane that best separates the two classes of data, as shown in Figure 1. The hyperplane
is constructed of weights and biases, which can simply be interpreted as the slope and
intercept, respectively. One can solve or estimate these values by finding the parameters
that most accurately describes the observed data points.

∗The authors are with the Department of Electrical and Computer Engineer-
ing, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854,
smk330@scarletmail.rutgers.edu, ads221@soe.rutgers.edu. Code available at https://github.
com/soominkwon/Machine-Learning-with-Tensor-Factorizations

1

https://github.com/soominkwon/Machine-Learning-with-Tensor-Factorizations
https://github.com/soominkwon/Machine-Learning-with-Tensor-Factorizations

Figure 1: Visualization of learning a line (or hyperplane in higher dimensional space) that
best separates two classes of data. Machine learning algorithms estimate these weights, W ,
and bias, b, through empirical risk minimization.

In machine learning, we solve for these parameters (or predictors) through empirical risk
minimization (ERM). The ERM framework tries to estimate the parameters that minimizes
the “risk” or error of a loss function between the true and computed predictors given data. The
minimization of this loss function measures the “closeness” of the predictors, where a smaller
objective function value would account for a more accurate model. There are many different
machine learning classification algorithms, and each algorithm has a different loss function.
However, since these loss functions try to model a linear relationship, this implicitly requires
our data to be vectorized. If our data samples were to be multidimensional, vectorization
can make estimation of accurate predictors much more challenging. For example, consider
a different scenario in which one would like to make movie recommendations for a user
given the number of movies watched in a certain genre. This data can easily be stored in
the form of a matrix, where the rows represent each user and the columns represent the
movie genre. However, what happens when a user’s movie preferences change over time?
As shown in Figure 2, we can capture this third variable (and many others) by modelling
the observations in the form of a tensor, as it matches the structure of the data. Clearly,
the structure of this tensor is significant for accurate data analysis. If the orderings of the
movies watched were swapped for two given users, incorrect recommendations could be
made. Vectorizing this data does not account for these types of structures, making inference
much more challenging.

There are many modern applications that involve analyzing data with intrinsically many
more dimensions, including medical imaging [1, 2], image processing [3, 4], and seismic data
analysis [5]. In most of these settings, the objective is similar to that of the traditional
machine learning goal: to formulate a problem of prediction to establish an association
between the tensor covariates (independent variable) and outcomes (dependent variable).

2

Figure 2: Example of modeling observations: left – matrix, right – tensor

However, as previously mentioned, most machine learning frameworks are formulated for
vector spaces, making statistical inference challenging for tensor data. In addition, in
most of these domains, the tensor data also exhibits high dimensions. For example, in
medicine, tensor data samples may be of dimensions 128× 128× 128 or greater. Naively
turning this array into a vector for traditional machine learning would result in solving for
1283 = 2, 097, 152 coefficients. In this scenario, vectorization not only destroys the structure
of the data, but also makes computation infeasible.
Related Works. Recently, work on tensor-based machine learning approaches uses tensor
factorizations to reduce the number of coefficients to be estimated [6, 7, 8]. Specifically,
tensor decompositions are imposed on the coefficients as a scheme of feature selection or
dimensionality reduction. Integrating such decomposition structures solves for low rank
approximations of the true predictor, rather than the vector counterpart. Zhou et al. [8]
proposes a tensor regression model with additional independent variables for predicting
continuous values given fMRI data. For parameter estimation, they propose a maximum
likelihood (ML) approach using a block relaxation algorithm, which we adopt to formulate
tensor classification models. Tan et al. [7] proposes a logistic tensor regression model with a
`1 norm regularization to induce sparsity. We observe that this technique efficiently exploits
structure, which motivates us to generalize and formulate more classification problems with
different regularization (e.g. `2 norm), and on different datasets.
Our Contribution. In this paper, we investigate the performance of machine learning
classifiers with a CANDECOMP/PARAFAC (CP) decomposition structure on the coeffi-
cients/predictors. We have seen in previous literature that these methods work efficiently
for solving linear regression and logistic regression coefficients [7, 8]. We solve classification
problems, namely Support Vector Machines and Logistic Regression on both synthetic and
real data. The rest of this paper is organized as follows. We first discuss some tensor algebra
and notation that will be used throughout this paper. Then, we propose the objective

3

functions as well as a short analysis of the CP structured machine learning problems. We
motivate and show results of our approach by fixing and solving for the true predictor. We
compare the results from the tensor structured algorithm as opposed to the unstructured
vector algorithm. Our contributions can be summarized as follows:

• We perform experiments to show that our structured method works more efficiently
than the traditional method when the true predictor exhibits both an approximate
and exact low rank structure.

• We show that our structured approach solves for fewer coefficients more efficiently
than the traditional approach with a dimensionality reduction step (e.g. Principal
Component Analysis).

• We develop algorithms to solve machine learning problems with decomposition of
n-dimensional tensors with an alternating minimization scheme.

2 Preliminaries

We dedicate this section to discuss some of the concepts used throughout this paper. Due to
the theoretical nature of this work, the technical description may require some mathematical
maturity. The reader interested in the empirical findings can skip to Section 4.

For a complete introduction to tensors, see the comprehensive survey of Kolda and Bader
[9] and Rabanser et al. [10]. Tensors are simply defined as multidimensional arrays, and
these two terms will be used interchangeably. We will denote vectors with lower case letters
(x), matrices with capital letters (X), and tensors as bold capital letters (X).

2.1 Tensor Reorderings

Let X be a third-order tensor of dimensions X ∈ R3×3×2 with the two frontal slices defined
by X1, X2 ∈ R3×3:

X1 =

2 8 14
4 10 16
6 12 18

 , X2 =

1 7 13
3 9 15
5 11 17

 .
Vectorization. We can create a vector from any matrix or tensor by stacking the row or
column elements into a row or column vector, respectively. For example, vectorizing the
tensor X by its columns would yield the following column vector:

4

vec(X) =

2
4
...
15
17

 ,
where we stack the columns from the first frontal slice, X1 and the second frontal slice, X2.
The dimensions of the resulting vector would be x ∈ R18.
Matricization. The n-mode matricization (or unfolding) of a tensor Y ∈ Ra1×a2×...×aN is
denoted as Y(n), where Y(n) has the columns of the n-mode fibers. Consider the same tensor
X from the previous example. Then the three n-mode matricizations are the following:

X(1) =

2 8 14 1 7 13
4 10 16 3 9 15
6 12 18 5 11 17

 ,

X(2) =

 2 4 6 1 3 5
8 10 12 7 9 11
14 16 18 13 15 17

 ,
X(3) =

[
2 4 6 8 10 12 14 16 18
1 3 5 7 9 11 13 15 17

]
.

One can think of matricization as a generalization of vectorization but to matrices. Since
our example X is a third-order tensor, we have three matrices from matricization, one for
each mode.

2.2 Vector & Matrix Products

Outer Product. Let a and b be two vectors of dimensions a ∈ Rn and b ∈ Rn,

a =
[
a1 a2 . . . an

]
, b =

[
b1 b2 . . . bn

]
.

The outer product of a and b, denoted as a ◦ b, is a matrix of dimensions (a ◦ b) ∈ Rn×n,

a ◦ b = ab> =

a1b1 . . . a1bn
...

. . .
...

anb1 . . . anbn

 .
Note that this outer product is not only limited to vectors, and can be generalized to
matrices and tensors as well.

5

Kronecker Product. Let A and B be two matrices of dimensions A ∈ Rm×n and B ∈ Rj×k,

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 , B =

b11 . . . b1k
...

. . .
...

bj1 . . . bjk

 .
The Kronecker product of A and B, denoted as A⊗B, is a matrix of dimensions (A⊗B) ∈
Rmj×nk,

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 .
In essence, the Kronecker product is computed by multiplying every element in the first

matrix, A, by the entire second matrix, B.
Khatri–Rao Product. The Khatri–Rao product is the columnwise Kronecker product.
Consider two (different) matrices A ∈ Rm×n and B ∈ Rp×n. The Khatri–Rao product of A
and B, denoted as A�B, is a matrix of dimensions (A�B) ∈ Rmp×n,

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . an ⊗ bn

]
.

Here, we are taking the Kronecker product between every column vector from A and B.
Note that if A and B itself were column vectors, i.e. n = 1, then the Khatri–Rao product is
equivalent to the Kronecker product, A�B = A⊗B.

2.3 Tensor Decomposition

Tensor decompositions are generalizations of matrix factorizations to multidimensional
arrays [13]. We introduce one tensor factorization scheme that is important in understanding
the setting of our algorithm. In the matricized form, we show that this factorization has
useful properties to be solved with an alternating minimization scheme.

Figure 3: Graphical representation of the CANDECOMP/PARAFAC decomposition – low
rank approximation of a third–order tensor

6

CANDECOMP/PARAFAC (CP) Decomposition. The objective of the CP decom-
position is to express a tensor as the sum of component rank–one tensors, i.e. vectors, as
depicted in Figure 3. For example, consider a third-order tensor X ∈ RD1×D2×D3 . We can
approximate this tensor as the following

X ≈
∑R

r=1 ar ◦ br ◦ cr,

where ”◦” denotes the outer product, R represents the rank (positive integer), and ar ∈ RD1 ,
br ∈ RD2 , and cr ∈ RD3 for r = 1, . . . , R. We can formalize this decomposition as the
following optimization problem:

minimize
X̂

||X− X̂||, subject to X̂ =

R∑
r=1

ar ◦ br ◦ cr, (1)

where X̂ would represent a low rank approximation of X.
The factor matrices or CP factors are matrices with the rank–one tensors as entries.

From the previous three-dimensional case, A ∈ RD1×R would be an estimated CP factor
with entries

A =
[
a1 a2 . . . aR

]
.

With these definitions and the products defined previously, we can formulate some useful
properties for the third–order case:

X̂(1) = (C �B)A>,

X̂(2) = (C �A)B>,
X̂(3) = (B �A)C>.

(2)

These relationships can easily be generalized to n-mode tensors, but for the purposes
of this paper, n=3 will suffice. We will show how we can use these equations for our
alternating minimization algorithm in the following sections. There also are other useful
tensor factorizations, such as the Tucker decomposition, which is explained in detail in the
survey paper [9].

2.4 Machine Learning Optimization Problems

Many machine learning algorithms can be framed as empirical risk minimization (ERM)
problems. The empirical risk is defined in terms of a risk, or loss function `(·). For linear
classifiers, the loss of a linear predictor w on the data sample (xi, yi) can be written as
`(w>xi, yi) and the average empirical risk as 1

n

∑n
i=1 `(w

>xi, yi). We discuss these loss
functions for some common classifiers and how we can use them to solve tensor structured
ERM problems.
Support Vector Machines. Consider a dataset with n samples, i.e. {(xi, yi)}ni=1, where
yi ∈ {−1, 1}. Support Vector Machine (SVM) or maximum margin linear classifier is a

7

binary classifier that finds a hyperplane to best separate the data, while making minimal
margin violations [11]. SVM uses a loss function called the hinge loss function, defined by

`(w>xi, yi) = max[0, 1− yi(w>xi)],

where w is the coefficients of the separating hyperplane. With a penalty (or regularizer), we
can mathematically formulate SVM as the following ERM problem:

minimize
w

1

n

n∑
i=1

max[0, 1− yi(w>xi)] +
λ

2
||w||2. (3)

The regularization term, λ, is used to penalize the features, and hence weights, that
do not necessarily contribute to the prediction outcome. Here, we are considering the `2
penalty, but there are other regularizers such as the `1 penalty. We use these regularization
terms in our loss function to estimate a more accurate model.
Logistic Regression. Similarly, consider a dataset with n samples, i.e. {(xi, yi)}ni=1, where
yi ∈ {−1, 1}. The objective of Logistic Regression (LOGIT) is the same as SVM, with a
different loss function called the logistic loss function, defined by

`(w>xi, yi) =
1

1 + exp (−yi(w>xi))
.

The logistic loss function takes the form of the sigmoid function. With a regularization
term, we can define Logistic Regression as the following ERM problem:

minimize
w

1

n

n∑
i=1

log(1 + exp (−yi(w>xi))) + λ||w||2. (4)

We only introduce the objective function of these two classifiers, as we will construct
the CP structured algorithm with these functions in the following section. Note that we
do not include the bias term in our hyperplane equation, as it can be modeled in w> as a
column vector.

3 Problem Formulation

In this section, we propose our tensor-based classifiers in the form of an ERM framework.
In general, we structure our linear predictors (w>) to admit a CP decomposition, in which
we can reconstruct to make classifications. We also discuss the metrics that we will be
investigating to evaluate the performance of our models.

8

3.1 CANDECOMP/PARAFAC Structured Classifiers

Support Vector Machines. Consider a dataset {(Xi, yi)}ni=1, where Xi ∈ RD1×···×DN

denotes a tensor data sample with yi ∈ {−1, 1}. By imposing the constraints from (1) onto
the predictors of (3), we can formulate the following optimization problem:

minimize
W1,...,WN

1

n

n∑
i=1

max[0, 1− yi(〈
R∑

r=1

W
(r)
1 ◦W (r)

2 ◦ . . . ◦W (r)
N ,Xi〉)]. (5)

The traditional ERM problem for SVM in (3) solves for one vector predictor of dimensions
w ∈ RD1...DN . The problem in (5), which we call “CP-SVM”, solves for N matrix-valued
predictors of dimensions Wi ∈ RDi×R, for i = 1, . . . , N . As a concrete example, let each
tensor sample be dimensions Xi ∈ R5×5×5 and R = 3. The traditional problem would solve
for 5×5×5 = 125 coefficients, whereas the structured problem would solve for 3×(5×3) = 45
coefficients. As the dimensions increase, the structured problem substantially reduces the
number of parameters/coefficients to be estimated.
Logistic Regression. Similarly, consider a dataset {(Xi, yi)}ni=1, where Xi ∈ RD1×...×DN

denotes a tensor data sample with yi ∈ {−1, 1}. By imposing the constraints from (1) onto
the predictors of (4), we can solve the following ERM problem:

minimize
W1,...,WN

1

n

n∑
i=1

log(1 + exp (−yi(〈
R∑

r=1

W
(r)
1 ◦W (r)

2 ◦ . . . ◦W (r)
N ,Xi〉))) (6)

This new framework, which we call “’CP-LOGIT’, solves for fewer parameters, similar to
CP-SVM.

In practice, we solve for the weights using numerical optimization methods such as
gradient descent. However, solving for the weights in this new CP-structured paradigm is a
non-trivial task. In order to solve for the coefficients in (5) and (6), we adopt an alternating
minimization algorithm similar to the block relaxation algorithm proposed in Zhou et al.
[8]. At each iteration, we update block Wi, while keeping the rest of the blocks fixed. To
see this, when updating Wi ∈ RDi×R, we can rewrite the inner product in (5) and (6) with
the properties mentioned in (2):

Algorithm 1 CP Alternating Minimization (Zhou et al. [8])
Require: Dataset {(Xi, yi)}ni=1 with X ∈ RD1×...×DN , yi ∈ {−1, 1} and R
1: Initialize: Ai ∈ RDi×R for i = 1, . . . , N
2: repeat
3: for i = 1, . . . , N do
4: A

(t+1)
i = argmin

Ai

`(X, y, A(t+1)
1 , . . . , A

(t+1)
i−1 , Ai, A

(t)
i+1, . . . , A

(t)
N) + λ||Ai||2

5: end for
6: until `(θ(t+1))− `(θ(t)) < ε

9

〈
∑R

r=1W
(r)
1 ◦ . . . ◦W (r)

N ,Xi〉 = 〈Wi,X(i)(WD � . . .�Wi+1 �Wi−1 � . . .�W1)〉.

This alternating minimization algorithm is summarized in Algorithm 1, in which `(·)
represents the ERM problem to be minimized, θ represents a collection of all the parameters,
and λ is the regularization parameter. The parameter λ was tuned by hand, but can also be
determined through cross validation. To understand the CP structured algorithm, consider
the loss function in (5) with N = 3. When updating W2, we rewrite the inner product
〈
∑R

r=1W
(r)
1 ◦W (r)

2 ◦W (r)
3 ,Xi〉 as 〈W2,X(2)(W3 �W1)〉. Note that this equation follows

from the property of tensor algebra as shown in (2). We perform this algorithm for all the
factor matrices until the stopping criteria is met.

The alternating minimization algorithm is useful for several reasons. First, in practice,
this algorithm almost always converges to at least a local minimum [12, 13, 8]. To find the
best solution, the algorithm can be ran several times with different initial factor matrices.
Second, the low rank optimization problem over the factor matrices is non-convex [14]. Thus,
this problem becomes difficult to solve using common unconstrained solvers, such as gradient
descent. In literature, there are two ways to handle the non-convexity of this optimization
problem. One way is to relax the rank constraint by adding a convex regularization term
that induces low rank (e.g. trace norm, nuclear norm) [15, 16]. The other solution is to
employ this alternating minimization algorithm, as the optimization over one matrix, while
holding the others fixed is convex. We chose to explore this procedure following Zhou et
al. [8], as the algorithm is straightforward to implement using statistical software such as
MATLAB or Python.

3.2 Performance Metrics

We evaluate the performance of our models using several measures with different sample
sizes. The following four metrics help determine the measure of “closeness” between the true
and estimated predictors.

1. The Mean Squared Error (MSE) for n data samples and true predictor W is
computed as

MSE =
1

n
||W − Ŵ ||2 (7)

where Ŵ is the estimated predictor from solving the ERM problem.

2. The cosine distance (or similarity) [17] for true predictor W is computed as

cos(θ) =
〈W · Ŵ 〉
||W || · ||Ŵ ||

(8)

where Ŵ is the reconstructed predictor from solving the ERM problem. Mathematically,
the cosine similarity measures the cosine of the angle between two vectors projected

10

in a n-dimensional space. As the angle, θ, between the two vectors become smaller,
the cosine similarity will approach a value of 1. As the angles become farther apart
(perpendicular), the cosine similarity will approach a value of 0.

3. The reconstruction error for true predictor W and estimated tensor predictor Ŵ
is defined as

Reconstruction Error =
||W − Ŵ ||F
||W ||F

, (9)

where || · ||F denotes the Frobenius norm, a matrix generalization of the `2 norm .

4. The classification accuracy for n test samples is simply defined as the following:

Accuracy =
of correct predictions

total # of predictions made (n)
. (10)

After solving for Ŵ , we make predictions on test data and compare ŷi to the true
yi. Before comparing the labels, we use the sign function to quantize our values to
ŷi ∈ {−1, 1}.

4 Experiments

We used two types of data for our experiments: synthetic data and the Modified National
Institute of Standards and Technology (MNIST) database [18]. The MNIST database
is a benchmark dataset used widely in machine learning that consists of 60, 000 samples
of handwritten digits from 0 to 9. The objective of both experiments is to compare the
performance between the CP-structured algorithms and the traditional algorithms, which
were implemented using software packages TensorLy [19] and SciPy [20]. For all experiments,
we use a Python environment on a Macbook Pro with 2.2 GHz Intel Core i7 and 16 GB
RAM.

4.1 Synthetic Data

For synthetic data, we generated univariate yi responses with different sample sizes according
to the following model:

yi = 〈Xi,W 〉+ εi, (11)

where Xi is drawn independently and identically distributed (iid) from N (0, 1), ε is a noise
term drawn iid from N (0, 1), and W is the fixed predictor as shown in Figure 4. The
objective was to observe if our models defined in (5) and (6) can identify the true signal W
given (Xi, yi).
Performance Comparison. To measure the “closeness” and classification accuracy be-
tween the true model and the predicted model, we use performance metrics defined in (7),

11

Cross Square

Figure 4: Two 15× 15 images used as true predictors W to generate synthetic data

(8), (9), and (10). We compute these metrics at different sample sizes and show that as the
number of samples increases, the performance of the traditional vector approach converges
to the performance of the CP structured model. These results are displayed in Figures
5 and 6. In Figure 5, we can visually see that the predictors from our method solves for
the true predictors more accurately. For example, in the case of n = 500 from row 1, the
“cross” figure is more accurately portrayed using the CP method (right) than the traditional
method (middle). This would allow us to make more accurate predictions, as the estimated
weights more closely follow the true weights. In Figure 6, we can see that the MSE for
both algorithms is relatively the same throughout all sample sizes. For the cosine distance,
we can see that the CP structured algorithm approaches a value of 1 very quickly, which
indicates that there is a strong similarity between the estimated and the true coefficients.
The reconstruction error and classification accuracy both generally have gaps in the figures,
but lessen as the sample sizes increase. We can conclude that these results depend on the
sample size, as more samples can decrease the number of hyperplanes that separates the
data, predicting coefficients closer to the true model. Based on the trends of the graphs in
Figure 6, we also hypothesize that if the variance of the noise (ε) distribution was higher,
the CP structured algorithms would also perform better than the traditional method.
Results with PCA. The CP structured algorithm significantly reduces the number of
predictors to be estimated. To solve for less coefficients using the traditional method, we can
perform Principal Component Analysis (PCA) on the dataset before using the algorithm.
We use PCA on X with an energy capture of 95%, which reduces the number of coefficients
from 225 to 189. However, even with this minimal reduction, we can see in Figure 6 that

12

True Predictor Estimated Predictors

Figure 5: Reconstructed predictors from both algorithms: left – true predictor, mid-
dle – reconstructed predictor from traditional method with increasing sample sizes
(n = 500, 1000, 1500), right – reconstructed predictor from CP-structured Logistic Re-
gression with increasing sample sizes (n = 500, 1000, 1500)

there is a notable decrease in performance throughout most metrics. The MSE seems
unaffected, but the other three metrics start to see a gap between the traditional method
with no PCA and the CP structured algorithm. A possible explanation for this phenomenon
is that PCA does not capture tensor data efficiently in lower dimensional space. If we were
to decrease the energy capture, the gap in performance would grow larger even for a bigger
sample size. We predict that as the dimensions of the data increases, PCA would not be
an efficient feature learning method for parameter reduction, favoring the CP structured
methods.

4.2 MNIST Dataset

The objective of the MNIST dataset experiment was to observe which algorithm would be
more efficient to use when the true predictor exhibited an “approximate” low rank structure.
In the previous experiment, the two images used as the true predictor had an exact low
rank structure, as it could easily be computed through an outer product of two matrices.
Similar to the synthetic data setup, we generated univariate yi responses with sample size

13

Figure 6: Variation of performance (y-axis) with different sample sizes (x-axis) for SVM
and LOGIT. Columns 1-4 represent plots for the MSE, Cosine Distance, Reconstruction
Error, and Classification Accuracy, respectively. Row 1, 2: Performance metrics for LOGIT
with predictors as cross and square, respectively. Row 3, 4: Performance metrics for SVM
with predictors as cross and square, respectively. Predictors of cross and square is as shown
in Figure 4

n = 750 with the model defined in (11). However, for the true predictor, W, we chose a “1”
from the MNIST dataset, as it exhibits “approximate” low rank structure. We compared the
CP-structued algorithms to the traditional algorithms using different rank values. These
results are shown in Table 1.
Performance Comparison. We use the same performance metrics defined for the previous
experiment and display the results in Table 1. From this table, we can conclude that both
CP structured algorithms gave favorable results when the CP rank was 2. This shows that
we can approximate a ”1” from the MNIST dataset with matrices of rank 2. However in all
cases from rank 1 to 3, the structured algorithms gave more favorable results. This proves
to show that if the true predictor exhibits an approximate low rank structure, it may be
beneficial to use the structured algorithms for classification.

14

Method MSE Cos Distance Reconstruction Error
SVM 0.00128 0.51832 0.00053

CP-SVM (R=1) 0.00088 0.66727 0.00044
CP-SVM (R=2) 0.00026 0.90259 0.00024
CP-SVM (R=3) 0.00039 0.85099 0.00029

LOGIT 0.00120 0.54759 0.00051
CP-LOGIT (R=1) 0.00089 0.66483 0.00044
CP-LOGIT (R=2) 0.00028 0.89590 0.00024
CP-LOGIT (R=3) 0.00033 0.87807 0.00026

Table 1: Performance metrics between the traditional and structured algorithms for the
MNIST dataset experiment. The bolded values represent the “best” performance through-
out each method, where R represents the rank of the CP structured algorithm for each
experiment.

5 Conclusion

In this paper, we explored tensor-based classification models using a tensor decomposition.
We proposed two algorithms that imposed a CANDECOMP/PARAFAC factorization
structure on the predictors of traditional classification algorithms, namely Support Vector
Machines and Logistic Regression. Imposing these structures on traditional algorithms
allowed us to exploit the structure of the data, while solving for fewer parameters. We
showed with different performance metrics that our proposed method increased accuracy
and overall solved a more accurate estimation of the weights. The experiments showed
that the CP algorithm performed best when the true predictor had either an approximate
or an exact low rank structure. We also showed that solving for fewer parameters using
PCA compromised the performance of the traditional method. We predict that PCA would
not generalize well to data with multidimensional structure, favoring the CP structured
algorithms. However, we believe that it would be interesting if one could show if and when
PCA could be better than using CP structure. This could possibly be a case when the data
in question is known to be linear, as PCA is a linear feature learning method. An example
could be using structured data for prediction where it is known a priori that the features
have a linear relationship. However, due to time constraints, we were not able to explore
this possibility in detail. We also think it would be interesting to test these algorithms on
more datasets. In addition, we believe an exciting direction for future research could be to
exploit tensor decompositions on other applications such as deep learning. However, it is not
clear how one could approach this problem, as deep learning algorithms have non-convex
loss functions. We leave this up to the audience to explore for future exploration.

15

References

[1] R. Luis-García, C.-F. Westin, and C. Alberola-López, “Gaussian mixtures on tensor fields
for segmentation: Applications to medical imaging,” Computerized medical imaging
and graphics : the official journal of the Computerized Medical Imaging Society, vol. 35,
pp. 16–30, 10 2010.

[2] L. O’Donnell and C.-F. Westin, “An introduction to diffusion tensor image analysis,”
Neurosurgery clinics of North America, vol. 22, pp. 185–96, viii, 04 2011.

[3] W. Guo, I. Kotsia, and I. Patras, “Tensor learning for regression,” IEEE Transactions
on Image Processing, vol. 21, pp. 816 – 827, 03 2012.

[4] C. Jia, Y. Kong, Z. Ding, and Y. Fu, “Latent tensor transfer learning for rgb-d action
recognition,” in MM ’14, 2014.

[5] N. Kreimer and M. Sacchi, “Tensor completion via nuclear norm minimization for 5d
seismic data reconstruction,” vol. 78, 09 2012, pp. 1–5.

[6] X. Li, H. Zhou, and L. Li, “Tucker tensor regression and neuroimaging analysis,” 2013.

[7] X. Tan, Y. Zhang, S. Tang, J. Shao, F. Wu, and Y. Zhuang, “Logistic tensor regression
for classification,” 10 2012, pp. 573–581.

[8] H. Zhou, L. Li, and H. Zhu, “Tensor regression with applications in neuroimaging data
analysis,” Journal of the American Statistical Association, vol. 108, no. 502, p. 540–552,
Jun 2013. [Online]. Available: http://dx.doi.org/10.1080/01621459.2013.776499

[9] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM Review,
vol. 51, pp. 455–500, 08 2009.

[10] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor decompositions
and their applications in machine learning,” 11 2017.

[11] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical
Learning: With Applications in R. Springer Publishing Company, Incorporated, 2014.

[12] J. Bezdek and R. Hathaway, “Convergence of alternating optimization,” Neural, Parallel
& Scientific Computations, vol. 11, pp. 351–368, 12 2003.

[13] S. Wright, “Coordinate descent algorithms,” Mathematical Programming, vol. 151, 02
2015.

[14] E. Candès and B. Recht, “Exact matrix completion via convex optimization,” Commu-
nications of the ACM, vol. 9, pp. 717–772, 11 2008.

16

http://dx.doi.org/10.1080/01621459.2013.776499

[15] R. Tomioka and T. Suzuki, “Convex tensor decomposition via structured schatten norm
regularization,” Advances in Neural Information Processing Systems, 03 2013.

[16] K. Wimalawarne, R. Tomioka, and M. Sugiyama, “Theoretical and experimental analyses
of tensor-based regression and classification,” Neural computation, vol. 28, 09 2015.

[17] H. Nguyen and L. Bai, “Cosine similarity metric learning for face verification,” ACCV,
vol. 6493, pp. 709–720, 11 2010.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278 – 2324, 12 1998.

[19] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “Tensorly: Tensor learning
in python,” Journal of Machine Learning Research, vol. 20, pp. 1–, 02 2019.

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and Contributors, “SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[21] Y. Li, H. Zhu, D. Shen, W. Lin, J. Gilmore, and J. Ibrahim, “Multiscale adaptive
regression models for neuroimaging data,” Journal of the Royal Statistical Society.
Series B, Statistical methodology, vol. 73, pp. 559–578, 09 2011.

17

	Introduction
	Preliminaries
	Tensor Reorderings
	Vector & Matrix Products
	Tensor Decomposition
	Machine Learning Optimization Problems

	Problem Formulation
	CANDECOMP/PARAFAC Structured Classifiers
	Performance Metrics

	Experiments
	Synthetic Data
	MNIST Dataset

	Conclusion

