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The objective of this supplementary set of notes is to show how we can use Conjugate Gradient
Least Squares (CGLS) to update each factor matrix for the algorithm Tucker-Structured Phase
Retrieval.

Preliminaries
Vectorization: Define X ∈ Cn1×n2 . The vec(·) operator creates a column (or row) vector from
any multi-dimensional array by stacking the columns (or rows) of the array. For example, if we let

x = vec(X), (1)

then x has dimensions n (i.e. x ∈ Cn), where n = n1n2. There are many important properties
of the vec(·) operator [1]. The property that we will use is that given matrices A ∈ Cq×n1 and
B ∈ Cn2×r,

vec(AXB) = (B> ⊗A)vec(X), (2)

where ⊗ is the Kronecker product. Consequently, we can see that

vec(XB) = vec(IXB) (3)

= (B> ⊗ I)vec(X) (4)

and

vec(AX) = vec(AXI) (5)

= (I> ⊗A)vec(X), (6)

where I is the identity matrix.

Least Squares: Recall that a least squares problem can posed as an optimization problem of the
form

min
x
‖y −A>x‖2, (7)
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where A ∈ Cn×m, y ∈ Cm, and x ∈ Cn. The optimal x, denoted as x∗, has the closed-form solution

x∗ = (A>A)−1A>y. (8)

This is equivalent to saying that the optimization formulation is solving the linear system

A>Ax = A>y. (9)

If we can rearrange our optimization formula to look in the form of equation (9), then we can use
conjugate gradient least squares (CGLS) to solve for the optimal x∗.

Tucker-Structured Phase Retrieval
Notation: All norms (e.g. ‖·‖) are `2-norms unless otherwise stated. Scalars are denoted with low-
ercase letters (e.g. x), vectors are denoted as bold lowercase letters (e.g. x), matrices are denoted
as bold uppercase letters (e.g. X), and tensors are denoted as underlined bold letters (e.g. X).
Matricization of order d will be denoted as Md(·). Since we are working in the complex domain,
all matrix transposes can be regarded as Hermitian (or conjugate) transposes.

Problem Formulation: Recall that in the setup of Tucker-Structured Phase Retrieval, we assume
that our tensor X ∈ Cn1×n2×q admits a Tucker decomposition of the form

X = G×1 D×2 E×3 F, (10)

where G ∈ Cr1×r2×r3 , D ∈ Cn1×r1 , E ∈ Cn2×r2 , and F ∈ Cq×r3 . We want to solve for these factor
matrices (and core tensor) given sampling matrices Ak and observations

yi,k = |〈ai,k, vec(Xk)〉|2, (11)

for k = 1, . . . , q and i = 1, . . . ,m, where Xk ∈ Cn1×n2 are the frontal slices of X ∈ Cn1×n2×q. The
general optimization formula for alternating minimization in phase retrieval is∑

k

‖Ckyk −Akvec(Xk)‖22 . (12)

To solve for the Tucker factors with this formulation, we need to rewrite xk = vec(Xk) in terms of
the Tucker factors and core tensor.

Updating D: When updating D, we can write our objective function as∑
k

∥∥Ck
√
yk −A>k vec(Xk)

∥∥2 =
∑
k

∥∥Ck
√
yk −A>k vec(D · M1(G)(fk ⊗E)>)

∥∥2 . (13)

Let Sk =M1(G)(fk ⊗E)>. Then, our objective function becomes∑
k

∥∥Ck
√
yk −A>k vec(DSk)

∥∥2 =
∑
k

∥∥Ck
√
yk −A>k vec(IDSk)

∥∥2 (14)

=
∑
k

∥∥Ck
√
yk −A>k (S

>
k ⊗ I)vec(D))

∥∥2 , (15)
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where the second equality comes from the property previously stated. Lastly, if we let

Tk = A>k (S
>
k ⊗ I), (16)

updating D amounts to solving the system

T>k Tkvec(D) = T>k Ck
√
yk. (17)

Upon solving for vec(D), we can reshape the vector back into D ∈ Cn1×r1 .

Updating E: When updating E, we can write our objective function as∑
k

∥∥Ck
√
yk −A>k vec(Xk)

∥∥2 =
∑
k

∥∥Ck
√
yk −A>k vec((E · M2(G)(fk ⊗D)>)>)

∥∥2 . (18)

Let Uk =M2(G)(fk ⊗D)>. Then,∑
k

∥∥Ck
√
yk −A>k vec((IEUk)

>)
∥∥2 . (19)

Using the same property, the optimization problem becomes∑
k

∥∥Ck
√
yk −A>k vec((IEUk)

>)
∥∥2 =

∑
k

∥∥Ck
√
yk −A>k vec(U

>
k E
>I>)

∥∥2 (20)

=
∑
k

∥∥Ck
√
yk −A>k (I⊗U>k )vec(E

>)
∥∥2 . (21)

With Vk := A>k (I⊗U>), we can now solve the linear system

V>k Vkvec(E>) = V>k Ck
√
yk. (22)

Updating F: The update step for factor matrix F is slightly different in the sense that we have to
solve for each column of F, fk, separately. In addition, we do not use least squares to solve for fk,
and instead use Reshaped Wirtinger Flow to solve a noisy r-dimensional phase retrieval problem.
However, we can still take the methods shown previously to create the sampling matrices needed
for Reshaped Wirtinger Flow. The objective function can be written as∥∥Ck

√
yk −A>k vec(fk · M3(G)(E⊗D)>)

∥∥2 . (23)

Let H =M3(G)(E⊗D)>. The formulation is now∥∥Ck
√
yk −A>k vec(IfkH)

∥∥2 =
∥∥Ck
√
yk −A>k (H

> ⊗ I)vec(fk)
∥∥2 (24)

=
∥∥Ck
√
yk − J>k vec(fk)

∥∥2 , (25)

where Jk = A>k (H
>⊗ I). We can solve for fk using Reshaped Wirtinger Flow with the assumption

that fk were generated by

yk = |J>k fk|. (26)
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Updating G: Lastly, when updating G, we can write our least squares objective function as∑
k

∥∥Ck
√
yk −A>k (fk ⊗E⊗D)vec(G))

∥∥2 . (27)

With Mk := A>k (D⊗E⊗ fk),

M>k Mkvec(G) = M>k Ck
√
yk. (28)

We can solve for vec(G) and reshape it back into its tensor form.
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