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Learning objectives of this project

The main objectives of our project are

1 To use concentration inequalities to show that an average of
random matrices is close to its expectation

2 To show how we can condition on high probability events in order
to use concentration inequalities

3 To use concepts that we learned such as rotational invariance,
union bounds and matrix Bernstein’s inequality
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What is phase retrieval?

Mathematically, phase retrieval is the problem of recovering a complex
signal x ∈ Cn given measurements ai ∈ Cn and observations

yi = |a⊤i x|2, i = 1, . . . ,m.

• This problem is also referred to as quadratic sensing or non-linear
compressed sensing

• Generally “harder” to theoretically analyze than linear compressed
sensing

• Occurs in many imaging domains such as X-ray crystallography
and Fourier ptychography
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Why do we care about phase retrieval?

For Fourier ptychography:

• Used to solve challenges regarding microscopes (tradeoff between
resolution and field of view)

• Microscopes capture the intensity of the parts of an image given
by the Fourier spectrum

• Cannot capture the complex values

For X-ray crystallography:

• Exposes crystals to x-rays to capture diffracted patterns

• Sensing apparatus is only able to observe the amplitude of the
intensities (or patterns)
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What are some algorithms for phase retrieval?

There are a lot of existing algorithms:

• Convex: PhaseLift [Candés et al. 2015]

• Non-convex: PhaseCut [Waldspurger et al. 2013],
AltMinPhase [Netrapalli et al. 2015], Wirtinger Flow [Candés et
al. 2015], Truncated Wirtinger Flow [Chen et al. 2015], Reshaped
Wirtinger Flow [Zhang et al. 2016], ...

We will try to understand the theoretical guarantees of
AltMinPhase
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Intuition behind AltMinPhase

Recall that the goal is to recover x ∈ Cn given y ∈ Rm and
A ∈ Cn×m.

• The main issue is that we do not have access to the true phases
of y.

• What would we do if we did have access to the phases of yi (i.e.
ci = Phase(⟨ai,x⟩))?

• Then the problem just simplifies to solving a least squares
problem:

Cy = A⊤x,

where C := Diag(c) is a diagonal matrix.
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Intuition behind AltMinPhase

Of course, we do not have the phase matrix C:

• We can try and estimate C given a good estimate of x.

• Given a good estimate of C, we can estimate x using least
squares.

• Then, we can alternately update C and x until we get a “good
enough” solution for x.

But wait, we said that we can estimate C given a good estimate of x.

Q: How can we obtain a good initial estimate of x?

A: Use spectral initialization to initialize x!
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What is spectral initialization?

• Spectral initialization is just a fancy way of saying that we can
find an initial estimate of x that is close to the true x∗ with high
probability.

• The term “spectral” comes from the use eigenvectors of properly
designed matrices from data

• This just means we can construct a matrix from y and A and use
the top eigenvector of the matrix as our initial estimate

• We see spectral initialization a lot in non-convex optimization
problems [Chen et al. 2021]
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Spectral initialization for AltMinPhase

The spectral initialization step for our problem involves taking the
top eigenvector of

S =
1

m

m∑
i=1

yiaia
⊤
i .

This is mainly because the expectation of S (assuming that a is
Gaussian) is

E[S] = 2xx⊤ + ∥x∥22.
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Spectral initialization for AltMinPhase

So then why is taking the top eigenvector S a good estimate of x?
Let’s look at what taking the top eigenvector of E[S] gives us:

E[S]u = λu

(2xx⊤ + ∥x∥22I)u = λu

x⊤(2xx⊤ + ∥x∥22I)u = x⊤λu

2x⊤xx⊤u+ x⊤x⊤xu = λx⊤u

2x⊤x(x⊤u) + x⊤x(x⊤u) = λ(x⊤u)

3∥x∥22 = λ.

The leading eigenvector u1 is equivalent to u1 =
x

∥x∥2 with eigenvalue

λ = 3∥x∥22!
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Theoretical guarantees for spectral initialization

• All we said so far was that given enough samples m, we can find a
good initial estimate x

• We want to make this argument more rigorous using the tools
from high-dimensional probability!

Theorem (Netrapalli et al. 2015)

There exists a constant C1 such that if m ≥ C1
c2
n log3 n, then the

spectral initialization of AltMinPhase guarantees that

dist(x0,x∗) ≤
√
c

with probability greater than 1− 4
m2 , where

dist(w1,w2) :=

√
1−

∣∣∣ ⟨w1,w2⟩
∥w1∥2∥w2∥2

∣∣∣2.
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Proof outline

The goal is to show that given sufficiently large m, the top eigenvector
of S is close to x∗ w.h.p:

1 We want to first show that S is close to E[S] w.h.p using matrix
Bernstein’s inequality

2 Show that if S is close to E[S], then the top eigenvector of S is
close to x∗

We will prove this under the Gaussian assumption, i.e. ai ∼ CN (0, I).
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The main tool that we will need

Theorem (Matrix Bernstein (Tropp 2012))

Consider a finite sequence of Xi of independent random matrices with
dimensions n× n. Assume that E[Xi] = 0 and ∥Xi∥ ≤ R for all i,
almost surely. Let σ2 := ∥

∑
i E[X2

i ]∥2. Then, for all t ≥ 0, the
following holds:

P

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥
2

≥ t

)
≤ 2n exp

(
−m2t2

σ2 +Rmt/3

)
.
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Proof of initialization stage of AltMinPhase

Recall that we want to first show that S is close to E[S], where

S =
1

m

m∑
i=1

yiaia
⊤
i (1)

=
1

m

m∑
i=1

|a⊤i x|2aia⊤i . (2)

• However, we want to show this for all x.

• But remember that ai ∼ CN (0, In) and are rotationally
invariant.

• That makes S rotationally invariant, which then we can set
x = e1, where e1 is the first elementary vector and simply rotate.
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Attempting to apply matrix Bernstein

Now, let S be

S =
1

m

m∑
i=1

|⟨ai, e1⟩|2aia⊤i (3)

=
1

m

m∑
i=1

|a1,i|2aia⊤i (4)

and Si = |⟨ai, e1⟩|2aia⊤i . To apply matrix Bernstein on S, we need
two assumptions to hold:

1 E[Si] = 0

2 ∥Si∥2 ≤ R for all i, almost surely

Let’s see if these assumptions hold.

Rutgers University Kwon, Sathyavageeswaran



HDP Final Project > AltMinPhase 17 / 34

Handling the first assumption

Recall that

S =
1

m

m∑
i=1

|a1,i|2aia⊤i (5)

and ai ∼ CN (0, In).

Due to the term |a1,i|2,

Si =

|a1,i|
4

. . .

|a1,i|2|an,i|2

 . (6)

Thus, E[Si] ̸= 0.
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Handling the first assumption

Even though E[Si] ̸= 0, dealing with this is quite simple – we can just
show

P

(∥∥∥∥∥ 1

m

m∑
i=1

Si − E[Si]

∥∥∥∥∥
2

≥ t

)
≤ α(−mt).

Note that this is actually what we wanted to show anyways, so it all
works out!
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Handling the second assumption

Now, what about the second assumption ∥Si∥2 ≤ R for all i? Recall
that

Si =

|a1,i|
4

. . .

|a1,i|2|an,i|2

 , (7)

with |aj,i| being complex Gaussian. Since |aj,i| is Gaussian, it is
unbounded almost surely.

What can we do to solve this issue?
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Conditioning on high probability events

What we can do is condition on the fact that ai is well behaved.
Specifically, define

P

(∥∥∥∥∥ 1

m

m∑
i=1

Si − E[Si]

∥∥∥∥∥
2

≥ t

)
︸ ︷︷ ︸

E

≤ α(−mt). (8)

Now, define

P (∥Si∥2 ≥ R)︸ ︷︷ ︸
A

≤ α

(
1

m

)
. (9)

What we want to show is that

P(EC) = P(EC |A) · P(A) + P(EC |AC) · P(AC). (10)
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Conditioning on high probability events

Note that

P(EC) = P(EC |A)︸ ︷︷ ︸
use concentration

·P(A)︸ ︷︷ ︸
≤1

+P(EC |AC)︸ ︷︷ ︸
≤1

·P(AC)︸ ︷︷ ︸
tiny

(11)

≤ P(EC |A) + P(AC) (12)

≤ P(EC |A) + α

(
1

m

)
. (13)

We pay a price of event A happening by conditioning.

We need to find out what P(A) actually is. To do this, we need to
look at what ∥Si∥2 is.
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Looking at the norm of Si

Some algebra shows that

∥Si∥2 = σmax(Si) (14)

≤ tr(Si) (15)

= |ai,1|2∥ai∥22. (16)

Using this inequality, what we want to show is

P(|ai,1|2∥ai∥22 ≥ R) ≤ α

(
1

m

)
, (17)

and then use this to prove our result.
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Some more tools that we will need

Lemma (Bound on the Spectral Norm)

Suppose ai ∼ CN (0, In) and a1,i be the first element of ai. Then,

P(|a1,i|2∥ai∥2 ≥ 12 logm) ≤ 3

m2
.

The proof for this is provided at the end of these slides.
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Applying matrix Bernstein via conditioning

Going back, so far we have

P(E) ≤ P(E|A) + 3

m2
. (18)

For P(E|A), we can apply matrix Bernstein using ∥Si∥2 ≤ 12 logm:

P

(∥∥∥∥∥ 1

m

m∑
i=1

Si − E[Si]

∥∥∥∥∥
2

≥ t

)
≤ 2n exp

(
− m2t2

4nmt logm

)
. (19)

Now, to match the probability of 4
m2 on their Theorem, we need to

solve for t with

2n exp

(
− m2t2

4nmt logm

)
=

1

m2
. (20)
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Solving for t

Some algebra shows that

t =
4n log(m+ 2nm2)

m
(our term) (21)

≤ 4n log3/2(m)√
m

(their term). (22)

Thus, we have shown that w.p 1− 1
m2 ,∥∥∥∥∥ 1

m

m∑
i=1

Si − E[Si]

∥∥∥∥∥
2

≤ 4n log3/2(m)√
m

. (23)
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Solving for m

Given ∥∥∥∥∥ 1

m

m∑
i=1

Si − E[Si]

∥∥∥∥∥
2

≤ 4n log3/2(m)√
m

, (24)

if we set the right hand side to ϵ, some algebra shows that

m ≥ C

ϵ2
n2 log3 n (25)

≥ C

ϵ2
n log3 n, (26)

which is the sample complexity we wanted to show.
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Putting everything together

Combining everything together, we have shown that there exists some
C > 0 such that if m ≥ C

ϵ2
n log3 n, then

P

(∥∥∥∥∥ 1

m

m∑
i=1

Si − E[Si]

∥∥∥∥∥
2

≤ ϵ

)
≥ 1− 4

m2
. (27)
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What we learned from this project

• We had a hard time understanding the authors’ proofs – we
should take the time to write clearer proofs for other people to
understand more easily

• Conditioning on high probability events is useful in scenarios in
which assumptions may not hold

• A nice example to use some of the tools that we learned from this
course
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Thank You!
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Proofs of Lemmas

Lemma (Tail-Bound on Chi-Squared)

Suppose x ∼ CN (0, 1). Then,

P(|x|2 ≥ 6 logm) =
1

m3
.

Lemma (Tail-Bound on Norm of Complex Gaussian)

Suppose x ∼ CN (0, I). Then,

P(∥x∥2 ≥ 2n) ≤ 2 exp(−n2/2).
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Proof of Lemma (Tail Bound on Chi-Squared)

|x|2 is the sum of squares of two N (0, 1) random variables, thus it is a
chi-squared random variable with 2 degrees of freedom.
The CDF of a chi-squared random variable with 2 degrees of freedom
is given by

FX(x) = 1− exp (−x/2). (28)

Hence we have,

P(|x|2 ≥ 6 logm) = 1− FX(6 logm)

= exp (−3 logm)

=

(
1

m3

)
. (29)
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Proof of Lemma (Bound on Norm of Complex Gaussian)

We know that, if x ∼ N (0, I), then ∥x∥2 is close to n and we have

P(∥x∥2 ≥ n) ≤ exp(−n2/2). (30)

Here, since x ∼ CN (0, I) we need to consider Re{x} and Im{x}, and
hence

P(∥x∥2 ≥ 2n) ≤ 2 exp(−n2/2). (31)
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Proof of Lemmas

Lemma (Bound on the Spectral Norm)

Suppose ai ∼ CN (0, In) and a1,i be the first element of ai. Then,

P(|a1,i|2∥ai∥2 ≥ 12 logm) ≤ 3

m2
.
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Proof of Lemma (Bound on the Spectral Norm)

From (29) and (31) we have

P(|a1,i|2∥ai∥2 ≥ 12n logm) ≤ 2 exp
(
−n2/2

)
+

1

m3
. (32)

However, this is true for only one of the ai’s. By applying a union
bound over all i, we get

P(∪m
i=1|a1,i|2∥ai∥2 ≥ 12n logm) ≤ 2m exp

(
−n2/2

)
+

1

m2
.

= 2 exp
(
−n2/2 + logm

)
+

1

m2
.

≤ 2

m2
+

1

m2
.

=
3

m2
. (33)
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