
ECE 549: Detection and Estimation Theory Spring 2021
Soo Min Kwon

A Friendly Introduction to Differential Privacy

Preamble
This tutorial serves as a friendly introduction to differential privacy, a formal mathematical guarantee of
privacy for statistical models. Though friendly, the reader should have some knowledge of probability and
linear algebra to be able to efficiently permit the ideas presented here. Some knowledge of machine learning
would also be helpful. Most of the sections have a “comments” section, where the ideas are explained further
with examples. If the reader is inclined to learn more about differential privacy, we recommend the public
course by Prof. Gautam Kamath on Private Data Analysis1 and the tutorial from Prof. Kamalika Chaudhuri
and Prof. Anand D. Sarwate.2 The learning objectives of this tutorial are the following:

• Understand the definition of differential privacy

• Learn the different properties of differential privacy

• Learn how one can use differential privacy in practice

• Understand the recent literature and advancements in differential privacy

On the surface, it may seem like the topic of differential privacy may not be relevant to our course Detection
and Estimation Theory, but actually, we can analyze a lot of the topics we learned in the course from a
privacy perspective. For example, we can ask ourselves, how does the Fisher information behave in a private
setting? Can we make the parameter estimation process private? In this tutorial, we want to build and learn
the foundation of differential privacy so that we can try and answer these questions.

1 Quantifiable Privacy: Why do we need it?
Before we dive into explaining differential privacy, we need to first understand why we need a quantifiable
privacy measure. The reason why differential privacy is the de facto gold standard of privacy is because we
can explain to users how much privacy we can guarantee (with high probability) if their data contributed to
learning in a machine learning paradigm. Let’s start by looking at an example with qualitative privacy.

An Attempt at Data Privacy
We begin by talking about an attempt at data privacy. In 2006, Netflix hosted an open competition for
researchers to improve their collaborative filtering algorithm, Cinematch, for a grand prize of $1,000,000
USD. [1]. Netflix provided an anonymized dataset for the contestants, where each data sample consisted of
an user ID, movie ID, movie rating, and the date of the rating. At the time, Netflix assured its users that
the data was appropriately handled to ensure individual privacy. However, upon giving the grand prize to a
team named “BellKor”, Netflix faced a lawsuit for violating privacy in 2010, subsequently cancelling a second
prized competition.

Two researchers from the University of Texas at Austin, Narayanan and Shmatikov showed in the paper
“Robust De-anonymization of Large Sparse Datasets” that one could infer the individuals in a dataset that
was made “private” through anonymization [2]. This paper proposed that by using a public3 dataset provided

1Link to the course: http://www.gautamkamath.com/CS860-fa2020.html
2Link to the tutorial: https://www.ece.rutgers.edu/~asarwate/nips2017/
3Here, the public dataset is a consolidation of data samples in which individuals have already given consent for their data

1

http://www.gautamkamath.com/CS860-fa2020.html
https://www.ece.rutgers.edu/~asarwate/nips2017/


Figure 1: Revealing Netflix data via cross-referencing, figure provided by Narayanan [2]

by IMDb, one could cross-reference the Netflix dataset with the IMDb dataset to de-identify individuals that
contributed to both datasets. A rough sketch of this analysis is shown in Figure 1. For specifics, we direct
the reader to the abundance of blog posts and papers written about this topic. This is one of the many
examples that show why de-anonymization, and hence qualitative privacy measures don’t actually work.
There are also other examples other than anonymization that one might think is safe (in terms of privacy),
but actually violates privacy, such as summary statistics [3] and implicit memorization of machine learning
models [4]. In literature, there are algorithms that claim that they are implicitly private, but we would like
to argue that they do not satisfy any “formal” privacy guarantees. The only way to really achieve this is
training models in a differentially private fashion with quantitative measures.

2 Introduction to Differential Privacy
Now that we have explained why we need a quantitative privacy measure, we would like to introduce the best
measure of privacy: differential privacy. We show a basic illustration of differential privacy in Figure 2. At a
high level, the definition of differential privacy states that the participation of an individual does not change
the outcome of an algorithm. For example, suppose that we were training a linear Support Vector Machine
model with the dataset including Tom from Figure 2. If Tom’s data sample was a supporting vector to the
estimated hyperplane, removing Tom’s data would surely shift the hyperplane in a different direction. That
is, the dataset with Jerry would produce a different hyperplane than Tom’s, resulting in different outcomes
for these two datasets. Given the two different hyperplanes, an adversary could easily identify that Tom and
Jerry contributed to the datasets. Of course, this would be a breach of privacy.

Now the question is, how does differential privacy ensure that two (similar) datasets produce the same
outcome? The simple answer to this question is that we can ensure this by adding noise. We can randomize
an algorithm by introducing noise to ensure that the distribution of the algorithm with Tom is not too far
from the distribution of the algorithm with Jerry. A large part of this tutorial is going to be learning (1)
how one can add noise to ensure privacy, (2) the different types of noise mechanisms there are, and (3) how
to quantify a privacy risk given the amount of noise an algorithm has. We now introduce some important
definitions that are needed for the formal differential privacy definition.

Definition 1 (Neighboring Datasets). Consider a set D with n data samples D = {x1,x2, . . . ,xn} , where
each xi takes values from some set X . We say a data set D′ = {x′1,x′2, . . . ,x′n} is a neighbor of the data
set D = {x1,x2, . . . ,xn} if for all but one value of i we have x′i = xi . That is, the Hamming distance
between the two data sets is 1 .

If this definition of neighboring datasets is confusing, we can refer back to Figure 2. For example, we can
say that the dataset with Jerry is a neighbor of Tom’s dataset, as they differ by only one data sample (Tom

to be made public.

2



Dataset  +

Dataset  +

(     )

(     )

Algorithm

Algorithm

Outcome

Outcome

Figure 2: Illustration of the definition of differential privacy.

and/or Jerry).

Definition 2 (Global Sensitivity). Let f : Xn → Rd be a real vector-valued function. The `1 global
sensitivity of f is

∆1(f) = max
D∼D′

‖f(D)− f(D′)‖1 . (1)

The `2 global sensitivity of f is

∆2(f) = max
D∼D′

‖f(D)− f(D′)‖2 . (2)

When the function we are using is clear from the context, we will just use ∆ for the sensitivity.

This definition of global sensitivity is important in analyzing how much noise we can add to guarantee
a certain level of privacy. The sensitivity, in essence, is how much a function value (at most) changes by
removing a data sample, as the max is taken over all neighboring datasets, D and D′ . Note that in practice,
this value is never given to us and we generally need either some Lipschitz property or gradient clipping
(explained later).

Definition 3 (Differential Privacy [5]). A randomized mechanism M : D → R is said to be ( ε, δ )-
differentially private if for all neighboring databases D,D′ ∈ D , and for any subset of outputs S ⊆ R ,
we have

P (M(D) ∈ S) ≤ exp(ε)P (M(D′) ∈ S) + δ. (3)

We use shorthand notation (ε, δ) -DP for (ε, δ) -differentially private and ε -DP for (ε, 0) -differentially
private. In literature, ε -DP and (ε, δ) -DP are sometimes called “pure” and “approximate” differential privacy.
The original definition of differential privacy actually does not include the δ term, where δ allows us to
have some “slack” in privacy. One can interpret δ as the probability that the mechanism fails to provide the
privacy risk ε . We want both of these terms, ε and δ , to be as small as possible.

Comments
In this section, we would like to take the time to briefly go over what we’ve introduced so far. We believe that
the definition of neighboring datasets and sensitivity were explained in detail, but the definition of differential
privacy needs a bit more intuition. Firstly, what is a “randomized mechanism”? A mechanism is simply a
function that maps the data to an arbitrary set. For example, let’s consider a machine learning algorithm
that mapped the data samples xi to some label yi . If this mapping was a function, say yi = f(xi) , then

3



a randomized function (or mechanism) is one that satisfies yi = f(xi) + Z , where Z is noise drawn from
some probability distribution. Now, this new randomized mechanism satisfies (ε, δ) -DP, if the ratio of two
distributions under neighboring datasets is bounded by eε . One can see this if we re-arrange the equation
in (3) to

P (M(D) ∈ S)− δ
P (M(D′) ∈ S)

≤ eε. (4)

Note that we are being quite informal here, but for explanation purposes we believe this is okay. Of
course, the probability P here is taken over the randomness of the algorithm. Later, we will see how we can
add noise to make an algorithm (or function) “randomized”.

3 Properties of Differential Privacy
In this section, we will introduce three properties of differential privacy: group privacy, post-processing
invariance, and basic composition. Recall that the definition of differential privacy has this notion of neigh-
boring datasets, where the datasets differ by one entry. One might wonder, “well, what if the datasets differed
by more than one entry?”. This is what we call group privacy.

Definition 4 (Group Privacy [5]). Let M : D → R be a randomized mechanism that is ( ε, δ )-differentially
private. Suppose D and D′ are two datasets that differ in exactly k positions. Then, for any subset of
outputs S ⊆ R , we have

P (M(D) ∈ S) ≤ exp(kε)P (M(D′) ∈ S) + kδ exp((k − 1)ε). (5)

That is, if we increase the distance between the two datasets, the privacy risk ε grows with a factor of
the distance. To be frank, we have not encountered this definition a lot in the literature, but it is nice to
know.

Definition 5 (Post-Processing [5]). Let M be a randomized mechanism that is (ε, δ) -DP and g be an
arbitrary mapping from the set of possible outputs to an arbitrary set. Then, g ◦M is also (ε, δ) -DP.

This property is essentially saying that any differentially private output can be arbitrarily transformed
without increasing its privacy risk. That is, we can mathematically do anything we want to the output, and
the new output would still satisfy (ε, δ) -DP. This is actually a very powerful statement and the proof is
quite easy to follow [5].

Definition 6 (Basic Composition [5]). Let M = [M1,M2, . . .Mk] be a sequence of algorithms, where each
Mi is (εi, δi) -DP. Then M is

(∑k
i=1 εi,

∑k
i=1 δi

)
-DP.

The definition of basic composition is saying that if we run k analyses on the same private (or sensitive)
dataset, then the total output satisfies the sum of εi and δi differential privacy. On the surface, this may
seem similar to the privacy guarantee of group privacy, but they are not the same and in fact, we can improve
upon the basic composition (shown in Section 4.4).

Comments
Here, we expand upon the definition of post-processing and basic composition with examples. Suppose we
solved for a vector of weights ~θ using some differentially private estimation technique that satisfied (ε, δ) -DP,
with

~θ = [1, 2, 3, 4, 5]. (6)

Let f be a function that takes in a vector x = [x1, x2, . . . , xN ] and computes the mean:

f(x) =
1

N

N∑
i=1

xi. (7)

4



Then, due to post processing invariance, f(~θ) = 3 is an output that also satisfies (ε, δ) -DP. Now, we realize
this may have been a very crude example, but the idea is clear – we can take a function of any differentially
private output and the new output would still satisfy the same privacy guarantees. For an audience familiar
with Information Theory, one could think of this as the data processing inequality, where a function of the
data cannot increase information about the dataset [6]. It is a similar notion here, where we cannot increase
the privacy risk.

So what about basic composition? Let’s go back to a machine learning example where we want to
estimate parameters using gradient descent. Gradient descent has a parameter that is number of iterations,
commonly referred to as “epochs”. If one were to run T iterations of an (ε, δ) -DP mechanism, then the total
privacy guarantee would be (Tε, Tδ) using basic composition. This can actually be very costly (in terms of
privacy), and we will see more of how we can improve this in the next section.

4 Differential Privacy in Practice
Thus far, we have been talking a little abstractly about differential privacy and we hope this section will
tie everything together. Specifically, we will show how we can use differential privacy in a machine learning
setting.

4.1 Noise Mechanisms
In Section 2, we briefly talked about how we can ensure privacy by adding noise to a mechanism (or function).
It turns out that there are many different methods to add noise, where each method satisfies a different level of
privacy. In this tutorial, we discuss two noise mechanisms, the global sensitivity method and the exponential
mechanism [5].

Global Sensitivity Method
Before explaining the global sensitivity method, we first give a quick primer on two probability density
functions.

Definition 7 (Laplace Distribution). The Laplace Distribution with mean 0 and scale b is the distribution
with probability density function defined by

Lap(x|b) =
1

2b
exp

(
−|x|
b

)
. (8)

With a slight abuse of notation, we will often refer to the Laplace distribution without x and write
Lap(b) .

Definition 8 (Gaussian Distribution). The Gaussian distribution with mean 0 and variance σ2 is the
distribution with probability density function defined by

N (0, σ2) =
1√

2πσ2
exp

(
− x2

2σ2

)
. (9)

Given these two probability density functions, we are now ready to introduce the Laplace and Gaussian
mechanisms.

Definition 9 (Laplace Mechanism). Let f : Xn → Rk be a real vector-valued function. The Laplace
mechanism is defined as

M(X) = f(X) + (Y1, . . . , Yk), (10)

where Yi are independent Lap(∆1(f)/ε) random variables and M(X) is a privacy-preserving approximation
of the function f(X) .

5



Recall that ∆1(f) is the `1 sensitivity of the function f . If we add Laplace noise to function f with
scale ∆1(f)/ε , then our function M now satisfies (ε, 0) -DP. We will prove this in the next Theorem.

Theorem 1. The Laplace mechanism preserves (or satisfies) (ε, 0) -differential privacy [5].

Proof. The idea behind this proof is that for any neighbouring databases, we want to show that the ratio of
their density functions is bounded by exp(ε) . Let X and Y be any two neighboring databases that differ in
one entry. Then, let pX(z) and pY (z) be the probability density functions of M(X) and M(Y ) evaluated
at a point z ∈ Rk . Lastly, let ∆ be the `1 sensitivity of f , i.e. ∆1(f) .

pX(z)

pY (z)
=

∏k
i=1 exp

(
− ε|f(X)−zi|

∆

)
∏k
i=1 exp

(
− ε|f(Y )−zi|

∆

) (11)

=

k∏
i=1

exp

(
−ε(|f(X)− zi| − |f(Y )− zi|)

∆

)
(12)

≤
k∏
i=1

exp

(
−ε(|f(X)− f(Y )|)

∆

)
(13)

= exp

(
ε
∑k
i=1 |f(X)− f(Y )|

∆

)
(14)

= exp

(
ε‖f(X)− f(Y )‖1

δ

)
(15)

≤ exp(ε). (16)

Let’s try to digest this proof. Equation (11) simply comes from the definition of the Laplace distribution
with scale ∆/ε . Equation (12) comes from writing (11) in terms of a single exp , and equation (13) can be
obtained by using the triangle inequality. Then by writing the product as a sum in exp , we realize that this
is actually the `1 sensitivity between the neighboring databases. Lastly, we can see that the ratio is upper
bounded by exp(ε) . Hence, the Laplace mechanism satisfies (ε, 0) -DP. Note that the absence of the δ term
implies that δ = 0 .

We now move onto the Gaussian mechanism. In the Laplace mechanism, we added noise to a function
by drawing independent noise from a Laplace distribution scaled to the sensitivity of the function. The
Gaussian mechanism is the same, but we add noise drawn from a Gaussian distribution.

Definition 10 (Gaussian Mechanism). Let f : Xn → Rk be a real vector-valued function. The Gaussian
mechanism is defined as

M(X) = f(X) + (Y1, . . . , Yk), (17)

where Yi are independent N (0, 2 ln(1.25/δ)∆2(f)
ε2 ) random variables and M(X) is a privacy-preserving

approximation of the function f(X) .

Recall that ∆2(f) is the `2 sensitivity of the function f . The Gaussian mechanism states that if we
choose σ of our Gaussian noise N (0, σ2) to be

σ ≥ ∆2(f)

ε

√
2 log

1.25

δ
, (18)

then our randomized algorithm M is (ε, δ) -DP. Since the proof for this is a little more involved, we leave
it for the reader to see in the privacy book [5].

6



Comments
We dedicate this section to clear up any confusion the reader might have. Firstly, note that this is called
"the global sensitivity method" as we are adding noise scaled to the sensitivity of the function in question.
The Laplace mechanism satisfies (ε, 0) -DP, whereas the Gaussian mechanism satisfies (ε, δ) -DP. With the
slackness of δ with the Gaussian mechanism, it is generally more widely used and is more robust for a lot
algorithms.

Let’s do an example of “randomizing” a function using the Laplace and Gaussian mechanisms. Suppose
we have a dataset X = [x1, x2, . . . , xN ] , where each data sample xi is a scalar in [0, 1] . Let the function f
be a function that computes the mean of a dataset, i.e.

f(X) =
1

N

N∑
i=1

xi. (19)

The `1 and `2 global sensitivity of f would be 1/N , since the maximum change in the function would
be 1 and the division of N comes from computing the mean. The Laplace mechanism would make a
privacy-preserving approximation of f by adding Laplace noise from Lap(1/Nε) ,

M1(X) = f(X) + Z, (20)

where Z ∼ Lap(1/Nε) . The function M1(X) satisfies (ε, 0) -DP.
The Gaussian mechanism would make a privacy-preserving approximation of f by adding Gaussian noise

M2(X) = f(X) + Z, (21)

where Z ∼ 1
NεN (0, 2 ln(1.25/δ)) . The function M2(X) satisfies (ε, δ) -DP.

Exponential Mechanism
In this tutorial, we will only briefly cover the exponential mechanism. The exponential mechanism was
designed for situations where adding noise (such as the Gaussian or Laplace mechanism) would completely
destroy its value [5]. For example, the mean example from the previous subsection would have been okay,
but what if we wanted compute the maximum revenue from an auction? If we were to make the prices from
the items of an auction private, adding noise to these prices would heavily shift the total revenue far from
the true revenue value. For these situations (and many others), we can use the exponential mechanism.

Definition 11 (Exponential Mechanism [5]). The exponential mechanism ME(X,H, u) selects and outputs
an element h ∈ H with probability proportional to

p(h) ∝ exp

(
εu(X,h)

2∆u

)
(22)

One can think of X ∈ Xn as a dataset, h ∈ H as a set of objects, and u : Xn × H → R as a score
function. The score function takes in data X and an object h and outputs how “good” h is with respect
to data point X . ∆u is simply the sensitivity of the score function.

Theorem 2. The exponential mechanism ME is (ε, 0) -differentially private.

We leave the proof of this Theorem to the reader, but the proof is relatively easy to follow and is similar
to the proof from the Laplace mechanism.

4.2 Differentially Private Empirical Risk Minimization
Before we get into the private version of empirical risk minimization (ERM), let’s look at ERM in the non-
private setting. Many machine learning problems involve estimating a parameter θ given a dataset D of
{(xi, yi)}ni=1 pairs where x′is are data samples (or feature vectors) and y′is are labels. Given a loss function

7



` that takes in parameter θ and (xi, yi) , the ERM problem [7] solves for θ by minimizing the empirical
loss given by

L(θ,D) =
1

n

n∑
i=1

`(θ, xi, yi). (23)

To improve generalization performance and to mitigate “overfitting” [8], in practice, we often solve the
regularized ERM problem given by

L(θ,D) =
1

n

n∑
i=1

`(θ, xi, yi) + λN(θ), (24)

where λ is the regularization parameter and N(θ) is some function of θ . In most cases, we let N(θ) = ‖θ‖1
or N(θ) = ‖θ‖2 to induce sparsity. We can think of the term λ as the parameter that induces regularization,
where λ = 0 would imply no regularization, and λ = ∞ would be ignoring the data entirely. The term λ
is also often called a “penalty” term. The solution to the regularized ERM problem would be finding the θ
that yields the lowest value of L(θ,D) , i.e.

θ̂ = argmin
θ
L(θ,D) (25)

= argmin
θ

1

n

n∑
i=1

`(θ, xi, yi) + λN(θ). (26)

Now that we have a general idea of the non-private ERM framework, how can we make this process
differentially private? There are actually two different answers called output perturbation and objective
perturbation. However, in both cases, we need to add noise according to the sensitivity of the function!
How can we compute the sensitivity of L(θ,D) ? Sarwate et al. proved in the paper “Differentially Private
Empirical Risk Minimization” [9] that under certain circumstances, the `2 sensitivity of L(θ,D) is at most
2
nλ , where n is the number of data points and λ is a convexity parameter. We provide a sketch “proof” here.

Let D and D′ be two neighboring databases that differ in exactly one data entry. Specifically, let

D = {(x1, y1), (x2, y2, ), . . . , (xi, yi), . . . , (xn−1, yn−1), (xn, yn)} (27)
D′ = {(x1, y1), (x2, y2, ), . . . , (xi, yi), . . . , (xn−1, yn−1), (x′n, y

′
n)}. (28)

If we plug in the two datasets into the ERM framework, that would yield

L(θ,D) =
1

n

[
n−1∑
i=1

`(θ, xi, yi) + `(θ, xn, yn) + λN(θ)

]
(29)

L(θ,D′) =
1

n

[
n−1∑
i=1

`(θ, xi, yi) + `(θ, x′n, y
′
n) + λN(θ)

]
. (30)

If we subtract L(θ,D′) from L(θ,D) , then we can get the close to the definition of the sensitivity:

|L(θ,D)− L(θ,D′)| = 1

n
|`(θ, xn, yn)− `(θ, x′n, y′n)| . (31)

Lastly, if we make the assumption that each data point xi was bounded such that ‖xi‖2 ≤ 1 , then we get
that the `2 sensitivity of L(θ,D) is

‖L(θ,D)− L(θ,D′)‖2 =
1

n
‖`(θ, xn, yn)− `(θ, x′n, y′n)‖2 (32)

≈ 2

n
. (33)

8



We use an approximation here, since we are missing a term λ that corresponds to L(θ,D) being a λ -strongly
convex function [9]. Since that might be slightly out of the scope of this tutorial, we omit it here.

Now that we know the sensitivity of L(θ,D) , let’s take a quick look at output perturbation. Suppose we
were able to solve for θ̂ by solving the non-private ERM problem,

θ̂ = argmin
θ
L(θ,D). (34)

We can make a privacy preserving approximation to θ̂ , by adding Gaussian noise

θ̂priv = θ̂ + Z, (35)

where Z is a random vector from distribution N (0, O(n
2 log(1/δ)
λ2ε2 ) · I) . Thus, θ̂priv satisfies (ε, δ) -DP.

Hopefully this part was not too difficult to understand, as all we did was add Gaussian noise to the sensitivity
of L(θ,D) . Note that this method is called “output perturbation”, since we are adding noise and perturbing
the output of the function.

We now shift gears to look at objective perturbation. Objective perturbation generally gives better
results in terms of utility than output perturbation. If output perturbation adds noise to the output of the
function, one could imagine that objective perturbation adds noise to the objective function itself. More
precisely, consider the general regularized objective function from before,

L(θ,D) =
1

n

n∑
i=1

`(θ, xi, yi) + λN(θ). (36)

If non-private ERM involves minimizing L(θ,D) to find θ , then private ERM (DP-ERM) minimizes
Lpriv(θ,D) , where

Lpriv(θ,D) =
1

n

n∑
i=1

`(θ, xi, yi) + λN(θ) + 〈b, θ〉. (37)

The b term here is a noise vector drawn from either a Gamma or Gaussian distribution, scaled to the
sensitivity of the function. Finally, the DP-ERM solution is

θ̂priv = argmin
θ
Lpriv(θ,D) (38)

= argmin
θ

1

n

n∑
i=1

`(θ, xi, yi) + λN(θ) + 〈b, θ〉. (39)

Comments
In this section, we learned two ways to make ERM private: output and objective perturbation. Output
perturbation added noise to the output of the ERM problem, where objective perturbation made ERM
private by solving a “noisy” objective function. Both methods can obtain (ε, δ) -DP, but output perturbation
generally adds more noise and is shown to be empirically worse [9]. Additionally, a limitation of early DP-
ERM work is that in order to guarantee privacy, one actually needed to find an exact minimum of the loss
function. In practice, this might not be possible, but there have been some recent works that get around
this with good results [10].

4.3 Differentially Private Stochastic Gradient Descent
Previously, we took a look at the ERM framework, where we wanted to estimate parameters through min-
imizing an objective function. But we never actually answered the critical question: “how do we minimize
the function?” In some cases, the loss function may have a closed-form solution, and so one can find the
parameter that minimizes a function by taking the gradient with respect to the parameter and setting it
equal to zero. However, when the loss function does not have a closed-form solution, we need to find the

9



minimum through numerical optimization methods. Stochastic gradient descent (SGD) is an iterative al-
gorithm that finds a minimum (perhaps a local minimum) of an objective function by taking a step in the
opposite direction of the gradient of the loss function with respect to the parameter [11]. Specifically, given
data {x1,x2, . . . ,xN} and an objective function L(θ,xi) with parameter θ , the SGD algorithm on one
iteration updates θ according to

θt+1 = θt − ηt∇θL(θt,xi), (40)

where θt is the estimated parameter at iteration t , ∇θL(θ,xi) is the gradient of the objective function with
respect to θ computed on random sample xi , and ηt is the learning rate at iteration t . In some cases,
the learning rate η may be fixed for all iterations, but it has been shown that changing the learning rate
over time benefits training [12, 13]. In practice, we adapt to using a variation of SGD, mini-batch SGD, to
speed up the training (or estimation) process. In mini-batch SGD, instead of making updates according to
one random data sample, we make updates according to the average of several (or batch) of samples. The
update rule in this algorithm is

θt+1 = θt − ηt

(
1

|B|
∑
i

∇θL(θt,xi)

)
, (41)

where B is the batch size.
Of course, the next part of this section is to formulate private SGD. But one might wonder, “why do

we want to make SGD private?”. As we discussed in the previous Comments section, output perturbation
generally does not provide good utility and objective perturbation requires us to find an exact minimum. If
we instead train (or estimate) our models with private SGD, we can actually get around these limitations
with good utility. The concept of making noisy gradient updates were proposed in [14–16], but we explain
the differentially private SGD (DP-SGD) method proposed by Abadi et al. [17]. The DP-SGD algorithm is
outlined in Algorithm 1. Upon computing the gradient gt(xi) = ∇θL(θ,xi) on a batch of data samples, we
make updates according to

θt+1 = θt − ηt

(
1

|B|
∑
i

g̃t(xi) +N (0, σ2α2I)

)
, (42)

where g̃t(xi) is the gradient clipped to norm α and α is the clipping bound.

Algorithm 1 Differentially Private SGD (DP-SGD) [17]
Input: Data {x1,x2, . . . ,xN} , loss function L(θ) = 1

N

∑
i L(θ,xi) ;

Parameters: Learning rate ηt , noise variance σ2 , batch size B , gradient norm bound α , iterations T ;
Initialize: θ0 randomly
for t ∈ T do

Sample data:
Create random batch Bt with sampling probability q = B

N
Compute gradient:
For each xi ∈ Bt , compute gt = ∇θL(θt,xi)
Clip gradient:
ḡt(xi) = gt(xi)/max

(
1, ‖gt(xi)‖2

α

)
Average gradient and add noise:
g̃t = 1

|B|
∑
i g̃t(xi) +N (0, σ2α2I)

Update gradient:
θt+1 = θt − ηtg̃t

end
Output: θ T

Two steps that we take in DP-SGD that might not be so intuitive are random subsampling and gradient
clipping. Random subsampling is the process of getting a random batch of data samples where we can

10



samples equal to the batch size in expectation. We actually need this sampling probability for the privacy
analysis discussed later. The process of random subsampling is also related to something called “privacy
amplification via subsampling” [18]. For gradient clipping, when we were looking at DP-ERM, we were
able to easily compute the sensitivity of the function based on the condition that each data sample was
bounded to satisfy ‖xi‖2 ≤ 1 . Similarly, gradient clipping allows us to clip each gradient to norm α so that
each gradient vector satisfies ‖gt‖2 ≤ α . This way, the sensitivity of the gradient is α and adding noise

of N (0, σ2α2) , where σ =
√

2 log 1.25
δ /ε , guarantees us (ε, δ) -DP. However, it turns out that we’re only

guaranteed (ε, δ) for one iteration of DP-SGD! Then the obvious question is, what is the total (ε, δ) for
running DP-SGD for T iterations? Using the basic composition property from Section 3, the total DP-SGD
algorithm satisfies (Tε, Tδ) -DP. Now, if you are new to differential privacy, this might not look too bad. In
Section 4.4, we will show that (Tε, Tδ) is actually the worst pair of values one can get, and that we can
significantly improve upon the basic composition.

Convergence Analysis
We make a quick note on the convergence of DP-SGD. From a theoretical point of view, one might wonder if
DP-SGD has any convergence guarantees. There are many works that prove that DP-SGD surely converges,
but we will demonstrate some guarantees from the paper “Understanding Gradient Clipping in Private
SGD: A Geometric Perspective” [19]. Convergence analysis for SGD-type problems generally revolve around
showing two things:

1. Show that the term E[〈∇L(θt,xi), g̃t〉] diminishes to 0 .

2. Show that E[〈∇L(θt,xi), g̃t〉] is proportional to ‖∇L(θt,xi)‖2 or c‖∇L(θt,xi)‖ .

In the points above, ∇L(θt,xi) is the true gradient vector, whereas g̃t is the gradient vector with Gaussian
noise after clipping. At a high level, this paper showed that if the distribution of the noisy gradients was
approximately symmetric, then DP-SGD has the same convergence rate as SGD multiplied by a constant
factor. We empirically show some of these plots in Section 5.

4.4 Rényi Differential Privacy & The Moments Accountant
As a warning, we believe this section will be more mathematical, but is necessary if one would like to use
differential privacy efficiently in practice.

In Section 4.3, we saw that T iterations of the DP-SGD algorithm satisfied (Tε, Tδ) -differential privacy
using the basic composition scheme. That means if we wanted to have a privacy guarantee of (0.1, 10−5)
per iteration, then after running 200 iterations, our total privacy guarantee would be (20, 20−2) . This is a
horrible guarantee! Remember that we want ε and δ to be as small as possible. One might ask, why don’t
we just decrease the ε value to ε = 0.01 per iteration? Then, to satisfy ε = 0.01 per iteration, it may be
the case that we are adding too much noise that the utility is completely destroyed. So how do we deal with
this?

In the same paper as DP-SGD [17], Abadi et al. proposed the moments accountant, that showed that the
DP-SGD algorithm satisfied (qε

√
T , δ) -DP compared to (Tε, Tδ) -DP, where q is the sampling probability

shown in Algorithm 1. Referring to the previous example, if we let the sampling probability to be q = 1 (no
subsampling), then we get a bound of (1.414, 10−5) -DP. This is a significant improvement and is a promising
privacy guarantee. What is the moments accountant that allows us to make this significant change? It turns
out that the basic composition method was exaggerating the privacy loss, and that if we looked more closely
at the distribution of the privacy loss random variable (explained in a bit), then we can get a better bound.
This is often referred to as “advanced composition”.

Let us consider a randomized mechanism A : D → T . For some outcome o ∈ T of the mechanism and
neighboring datasets D,D′ ∈ D , the privacy loss random variable is defined as

Z = log
Pr[A(D) = o]

Pr[A(D′) = o]
. (43)

11



Note that Z is simply the ratio of the two distributions under neighboring databases of the randomized
mechanism. The idea behind the moments accountant [17] is to compute the moment generating function
(MGF) of Z for each iteration, use composition to get the MGF of the complete algorithm and then use that
to compute final privacy parameters (see Theorem 2 of [17]). The stepwise moment for any t at iteration j
is defined [17] as

αj(t) = sup
D,D′

logE [exp(tZ)] . (44)

If the total number of iterations is T , then the overall moment is upper bounded as α(t) ≤
∑T
j=1 αj(t) .

Finally, for any given ε > 0 , the overall mechanism is (ε, δ) DP for δ = mint exp (α(t)− tε) .
Let’s try to digest what we have discussed so far. The privacy loss random variable, Z , can be obtained

straight from the definition of differential privacy with δ = 0 . The definition of differential privacy (and
hence, the basic composition scheme) is saying that we want to upper bound this privacy loss random variable
so that Z ≤ ε . However, it turns out that this is a conservative bound, and Z is actually much smaller
than ε “most of the time”. Hence, by analyzing the MGF of Z , we can get a much tighter bound on ε , .e.g.
Z ≤ ε/10 . So, if we solve for t that minimizes the equation

δ = min
t

exp (α(t)− tε) , (45)

where ε is fixed, then we get a δ value that is much tighter than using the basic composition method.
The next question we would like to answer is, how do we obtain the value t that minimizes δ ? One could

use numerical optimization methods, but it turns out that we can use some algebra to obtain t in closed-
form. We derive this for the Gaussian mechanism. Now, for a Gaussian mechanism A(D) = f(D) + E ,
where E ∼ N (0, σ2) , the privacy loss random variable defined in (43) can be written as

Z = log
exp

(
−(o−fD)2

2σ2

)
exp

(
−(o−f ′

D)
2

2σ2

) =

(
2o(fD − f ′D)− (f2

D − f ′D
2
)
)

2σ2
. (46)

Note that, the random variable o is Gaussian with o ∼ N (fD, σ
2) . Therefore, it can be shown that the

random variable Z is also Gaussian and

Z ∼ N
(

(fD − f ′D)2

2σ2
,

(fD − f ′D)2

σ2

)
. (47)

Now, from the moment generating function of generalized Gaussian, we have

E[exp(tZ)] = exp

(
(fD − f ′D)2

2σ2
t+

1

2

(fD − f ′D)2

σ2
t2
)

(48)

= exp

(
(fD − f ′D)2

2σ2
(t+ t2)

)
. (49)

If the L2 sensitivity of the function A(D) is ∆ then

αj(t) = sup
D,D′

logE[exp(tZ)] (50)

= sup
D,D′

(
(fD − f ′D)2

2σ2
(t+ t2)

)
(51)

=
∆2

2σ2
(t+ t2). (52)

We can compute the upper bound of the overall moment

α(t) ≤
T∑
j=1

αj(t) =
T∆2

2σ2
(t+ t2). (53)

12



Now, for any given ε > 0 , we have

δ = min
t

exp (α(t)− tε) (54)

= min
t

exp

(
T∆2

2σ2
(t+ t2)− tε

)
. (55)

All we did so far was write α(t) in a way we can solve for t in closed form. Solving for t using the
equation in (55) , the minimum t , tmin , is

tmin =
1

2

(
2εσ2

T∆2
− 1

)
(56)

Plugging tmin back into equation (54), we get that the optimal δ value corresponding the a certain value
of ε yields

δopt = exp

(
T∆2

2σ2
(topt + t2opt)− toptε

)
(57)

=⇒ log δopt =
T∆2

2σ2

[
1

2

(
2εσ2

T∆2
− 1

)
+

1

4

(
2εσ2

T∆2
− 1

)2
]
− ε

2

(
2εσ2

T∆2
− 1

)
. (58)

What if we wanted to go the other way around, where we fix a value of δ and wanted to compute a value
ε ? Then, we can re-arrange equation (57) to get ε :

σ2

2T∆2
ε2 − ε+

T∆2

8σ2
+ log δtarget = 0 (59)

=⇒ ε =
1

2a

(
−b±

√
b2 − 4ac

)
, (60)

where a = σ2

2T∆2 , b = −1 and c = T∆2

8σ2 + log δtarget , and δtarget is our fixed δ value.
So how do we actually use this in practice? If you look at the expression for ε , then you can see that

it is only a function of the sensitivity (∆) , the total number of iterations (T ) , the noise variance of the
Gaussian mechanism (σ2) , and the fixed δ value. After running the DP-SGD algorithm, one can plug
these values in to get a nice (ε, δ) bound. In Figure 3, we illustrate the difference in (ε, δ) for multiple
composition techniques. Strong composition is something that we did not discuss, but it gives a slightly
bigger bound than the moments accountant [20]. We will not discuss strong composition here. However,
if you look at Figure 3 carefully, one can see that the “RDP” method gives the same performance as the
moments accountant. This is because Rényi differential privacy (RDP) and the moments accountant are
actually equivalent notions. Due to time constraints, we will unfortunately not be covering RDP, but we
hope that the reader is interested enough to go read it themselves [21].

5 Privacy-Utility Tradeoffs
In this section, we show some tradeoffs between privacy and utility in practice. The experimental setup is
the following:

• We implement regularized Logistic Regression with DP-SGD.

• We perform binary classification between two different classes of the MNIST dataset.

• We preprocess the MNIST dataset by normalizing all of the pixel values to [0, 1] .

• We use a decaying learning rate of ηt = 1√
t
, where t is the iteration number.

• We use a batch size of 150 , and hence a sampling probability of 150/N , where N is the total number
of training data samples.

13



0 200 400 600 800 1000
Number of iterations T

0

10

20

30

40

50

60

To
ta

l 

target = 1e-05, 2 = 1.00, = 0.01

Basic Composition
Strong Composition
RDP
Moments Accountant

Figure 3: Comparison of different composition (or accounting) techniques for ε and δ . For fixed values
δtarget = 10−5 , σ2 = 1 , ∆ = 0.01 , T = 1000 , the moments accountant and RDP methods provide a much
smaller overall ε the the basic composition.

• We add different values (variances) of Gaussian noise per run to demonstrate how the utility decreases
as privacy increases.

• We fix δ as δ = 10−4 . In practice, we try to set δ ≈ 1/N , where N is the total number of training
samples.

• We use the moments accountant to compute ε given sampling probability 150/N .

For all experiments, we use a Python environment on a Macbook Pro with 2.2 GHz Intel Core i7 and 16 GB
RAM.

In Figure 4, we can see that the non-private baseline performs much better in terms of prediction accuracy.
For a relatively large value of ε , we can get an accuracy near 95% and for a smaller ε value, we can get an
accuracy near 85% . This is a significant change, but one can try to improve these accuracies by playing with
the regularization parameter and possibly more iterations. Since we are adding noise on each step of SGD, it
is clear that DP-SGD will converge slower than SGD. In Figure 5, we compute the Cosine Distance between
the true gradient and the noisy gradient to try and observe the symmetry of the gradient distribution. It
turns out that if we use a full batch size, then the gradient distribution looks approximately symmetric, and
almost like a normal distribution! Referring back to the convergence analysis on DP-SGD, this gives us a
hint that DP-SGD surely converges. In Figure 6, we project the gradients onto a two-dimensional space
using random matrices. Upon projection, we plot the gradients in a 2D space to observe that this also looks
approximately symmetric.

14



(a) (b)

(c) (d)

Figure 4: Four different runs of the Logistic Regression experiment with DP-SGD and their test accuracies.
(a) Variance of σ2 = 1 and obtains (17.865, 10−4) -DP, (b) Variance of σ2 = 5 and obtains (4.275, 10−4) -DP,
(c) Variance of σ2 = 7.5 and obtains (3.045, 10−4) -DP, (d)Variance of σ2 = 10 and obtains (2.4, 10−4) -DP.

(a) (b)

Figure 5: Histogram of the cosine distance between true and noisy gradients. (a) Histogram of the cosine
distance of approximately 250 gradient vectors, (b) histogram of the cosine distance of all of the gradient
vectors.

15



1000 750 500 250 0 250 500 750 1000
1000

750

500

250

0

250

500

750

1000

Figure 6: Projection of approximately 250 gradients vectors onto a two-dimensional space using random
matrices. The approximate symmetry of the distribution hints at the convergence of DP-SGD.

6 Additional Comments
This concludes our friendly tutorial of differential privacy, but we wanted to point out some topics that
we were not able to discuss. We think that the topics of the exponential mechanism, privacy amplification
via subsampling, and Rényi differential privacy were only partially mentioned, but not explained detail.
We strongly urge the reader to take the time to read up on these topics, as they are really important in
using differential privacy in practice. For suggestions, comments, and questions, please feel free to contact
smk330@scarletmail.rutgers.edu.

16



References
[1] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings of the KDD Cup Workshop 2007. New

York: ACM, Aug. 2007, pp. 3–6. [Online]. Available: http://www.cs.uic.edu/~liub/KDD-cup-2007/
NetflixPrize-description.pdf

[2] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in Proceedings
of the 2008 IEEE Symposium on Security and Privacy, ser. SP ’08. USA: IEEE Computer Society,
2008, p. 111–125. [Online]. Available: https://doi.org/10.1109/SP.2008.33

[3] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A.
Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals contributing trace amounts of dna to
highly complex mixtures using high-density snp genotyping microarrays,” 2008. [Online]. Available:
https://doi.org/10.1371/journal.pgen.1000167

[4] N. Carlini, C. Liu, Úlfar Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and testing
unintended memorization in neural networks,” 2019.

[5] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Found. Trends
Theor. Comput. Sci., vol. 9, no. 3–4, p. 211–407, Aug. 2014. [Online]. Available: https:
//doi.org/10.1561/0400000042

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in Telecommunications
and Signal Processing). USA: Wiley-Interscience, 2006.

[7] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With
Applications in R, 2014.

[8] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics: Conference Series, vol. 1168,
p. 022022, 02 2019.

[9] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private empirical risk minimization,”
J. Mach. Learn. Res., vol. 12, no. null, p. 1069–1109, Jul. 2011.

[10] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang, “Towards practical differentially
private convex optimization,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 299–
316.

[11] S. Ruder, “An overview of gradient descent optimization algorithms,” 2017.

[12] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and distributed hypothesis testing,” IEEE
Transactions on Information Theory, vol. 64, no. 9, pp. 6161–6179, 2018.

[13] Y. Wu, L. Liu, J. Bae, K.-H. Chow, A. Iyengar, C. Pu, W. Wei, L. Yu, and Q. Zhang, “Demystifying
learning rate policies for high accuracy training of deep neural networks,” 2019 IEEE International
Conference on Big Data (Big Data), pp. 1971–1980, 2019.

[14] O. Williams and F. Mcsherry, “Probabilistic inference and differential privacy,” in Advances in
Neural Information Processing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds., vol. 23. Curran Associates, Inc., 2010. [Online]. Available: https:
//proceedings.neurips.cc/paper/2010/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf

[15] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient descent with differentially private
updates,” in 2013 IEEE Global Conference on Signal and Information Processing, 2013, pp. 245–248.

[16] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimization: Efficient algorithms
and tight error bounds,” ser. FOCS ’14. USA: IEEE Computer Society, 2014, p. 464–473. [Online].
Available: https://doi.org/10.1109/FOCS.2014.56

17

http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://proceedings.neurips.cc/paper/2010/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://doi.org/10.1109/FOCS.2014.56


[17] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Oct 2016. [Online]. Available: http://dx.doi.org/10.1145/2976749.2978318

[18] Y.-X. Wang, B. Balle, and S. P. Kasiviswanathan, “Subsampled renyi differential privacy and
analytical moments accountant,” ser. Proceedings of Machine Learning Research, K. Chaudhuri
and M. Sugiyama, Eds., vol. 89. PMLR, 16–18 Apr 2019, pp. 1226–1235. [Online]. Available:
http://proceedings.mlr.press/v89/wang19b.html

[19] X. Chen, Z. S. Wu, and M. Hong, “Understanding gradient clipping in private sgd: A geometric per-
spective,” 2021.

[20] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to Sensitivity in Private Data
Analysis,” in Proceedings of the Third Conference on Theory of Cryptography, 2006, pp. 265–284.
[Online]. Available: http://dx.doi.org/10.1007/11681878_14

[21] I. Mironov, “Rényi differential privacy,” CoRR, vol. abs/1702.07476, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07476

18

http://dx.doi.org/10.1145/2976749.2978318
http://proceedings.mlr.press/v89/wang19b.html
http://dx.doi.org/10.1007/11681878_14
http://arxiv.org/abs/1702.07476

	Quantifiable Privacy: Why do we need it?
	Introduction to Differential Privacy
	Properties of Differential Privacy
	Differential Privacy in Practice
	Noise Mechanisms
	Differentially Private Empirical Risk Minimization
	Differentially Private Stochastic Gradient Descent
	Rényi Differential Privacy & The Moments Accountant

	Privacy-Utility Tradeoffs
	Additional Comments

